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a b s t r a c t

The nonlinear behavior of steel structures considering the heating and the cooling phases of a fire is
investigated by the Vector Form Intrinsic Finite Element (VFIFE) method. The temperature dependent
constitutive relations of steel which include strain reversal effects are adopted. The numerical model is
first verified by comparing the results with the published analytical and experimental results for steel
structures in the cooling phase. Several numerical examples are then fully studied to investigate the
cooling behavior of steel structures. The proposed numerical model can effectively predict the nonlinear
behavior of the steel structure in both the heating and cooling phases.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Steel structures have been widely used in high-rise buildings,
although their temperature sensitivity is a weakness. Since the
properties of steel, such as the Young’s modulus and yielding
strength, drop rapidly with increasing temperature, the loading
capacity of such structures in fires will reduce dramatically. The
large deformation induced by the thermal strain will result in
structural damage or collapse. A number of researchers [1–7]
adopted the conventional finite element method to investigate
the fire response of steel structures, studying the inelastic
large deformations of beams, columns and frames due to the
degradation of strength and thermal expansion. There are many
experimental results that have been adopted as design codes, such
as ECCS [8], Eurocode 3 [9], BS 5950-8 [10] and AISC [11]. However,
these studies focused on the structural behavior during the heating
phase, and ignoring the cooling process.
The previous researches predicted the maximum allowable

temperature of the structure under constant loading, and these
results are important in preventing the collapse of buildings in
a fire, as well as ensuring the safety of rescue workers in such
situations. However, it is also important to evaluate structural
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damage after the fire and to draw up adequate repair plans. Steel
structures that experience a high temperature and then cool after
the fire will lose their original structural performance due to
residual stress and strain in some elements. A numerical model
for more accurate assessment is thus required to investigate the
structural behavior in the cooling phase.
The famous British Cardington test provides much experimen-

tal information about composite steel frames during the cooling
phase, such as the frame configuration, temperature distribution,
and structural behavior [12–16]. In addition, Cong et al. [17] and Li
et al. [18] provided time histories of the cooling temperatures and
structural behaviors for steel beams and steel columns in fire resis-
tant experiments, respectively. More recently, Li and Guo [19] per-
formed experiments that examined the fire resistance of restrained
steel beams during the heating and cooling phases. With respect
to the numerical analysis, because strain reversal happens during
the cooling phase, cooling can be treated as an unloading behav-
ior when considering thermal effects as the equivalent loading.
El-Rimawi et al. [20], Bailey et al. [21], Bailey [22], Iu et al. [23], Li
and Guo [24], and Guo and Li [25] studied the cooling behavior on
the basis of the model proposed by Franssen [26], which assumed
that the plastic strain of thematerial is irrelevant to step-wise tem-
perature change.
The analysis of the fire response of steel structures frequently

requires the modeling of progressive failure and collapse, which
needs the consideration of large rigid body motions, large
deformations, and unbalanced applied forces. If the continuum is
subjected to a set of non-equilibriumexternal forces, the rigid body
motion is not zero and global equilibrium cannot be reached. In
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addition, if the order of magnitude of the rigid body component
is much larger than the deformation, errors in the calculation of
the internal forces may lead to numerical instability. There are
fundamental difficulties in using conventional finite elements to
treat large rigid body motion. Recently, Ting et al. [27,28] and Shih
et al. [29] proposed a vector form intrinsic finite element (VFIFE)
procedure. This procedure is designed to calculate the motions of
a system of rigid and deformable bodies, which may include large
rigid body motions and large geometrical changes.
This study adopts the VFIFEmethod to investigate the nonlinear

behavior of steel structures during the cooling as well as the
heating phases of fire. A two-dimensional frame element is
employed. The numerical model is first verified by comparing the
results with the published analytical and experimental results of
the steel structure during the cooling phase. Several numerical
examples are then fully studied to investigate the cooling behavior
of steel structures.

2. Fundamentals of Vector Form Intrinsic Finite Element
(VFIFE)

The VFIFE is a vectormechanics basedmathematical calculation
method for structures with a large deformation. It is based on an
intrinsic finite element modeling approach, an explicit algorithm,
and a co-rotational formulation of kinematics [27–30]. The VFIFE
maintains the intrinsic nature of the finite element method and
makes a strong form of equilibrium at the connection nodes of
members. All the forces balanced at each node are obtained from
the principle of virtual work. The VFIFE method adopts an explicit
solution procedure to avoid the difficulties that are caused by
iterations of material non-linearity and an incremental theory. All
the material properties, stress distribution, particle velocities and
geometry are defined from the calculation results of the previous
time step. The primary objective of this method is to handle the
motion and deformation of a system ofmultiple continuous bodies
and their interactions.
The VFIFE approach introduces a general description of particle

motion to handle large rigid body motion by incorporating
an adaptive convected material frame in the basic definition
of the displacement vector and strain tensor. The convected
material frame is a modification of the co-rotational approach. The
conventional co-rotational approach provides a simple kinematic
description. Its constitutive equation is expressed by total stress
and total strain, and it is well-suited to considering intermediate
large rotation [5,29,30]. For the large displacement study of frame
structures, small deformations superposed on large rotations are
commonly assumed.
In this study, the proposed method models the structure as a

system of discrete mass points, and these positions of mass points
characterize the shape and motion of the structure. The motion
of each mass point satisfies Newton’s laws. The internal forces
induced by deformation and the external load are applied at each
mass point. The internal forces of the elements are then calculated
by using the convected material reference frame and fictitious
reversed rigid body motion [31]. A simple central difference
scheme is adopted to solve a set of equations of motions for each
particle. The rigid body motion and deformation displacement are
decoupled for each increment. By assuming a lumpedmass matrix
of diagonal form, the explicit finite element analysis involves only
vector assemblage and vector storage.
Fig. 1 shows the schematic configuration of deformation of the

frame elements. The initial position of an element at time t0 is
assumed to be (10, 20), the position at time ta = t − τ is (1, 2),
and the current position of an element at time t is (1′, 2′). The
displacement increment vectors 1d1 and 1d2 can be calculated
from the equations of motion with a reference coordinate at (1, 2).
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Fig. 1. Schematic configuration of deformation of the frame elements.

The component of rigid body motion is decomposed from the
displacement increment vectors by the fictitious reverse rigid body
motion. First, the element (1′, 2′) translates tomake points 1 and 1′
coincide, and then rotates an angle1θ to the direction of element
(1, 2). The deformation displacement increment vector1dd is thus
expressed as

1dd = 1d−1dr (1)

where 1d and 1dr are the total displacement increment vector
and displacement increment vector induced by rigid body motion,
respectively. A two-node plane frame element has only three
independent variables of deformation displacement, and it is
expressed as

dTe =
[
1e θ1 θ2

]
(2)

where 1e is the axial deformation increment, and θ1 and θ2 are
the changes of slopes of the nodes. The displacement field of the
Bernoulli–Euler frame element can be written as

ud = s1e − [(1− 4s+ 3s2)θ1 + (−2s+ 3s2)θ2]y (3a)

vd = (s− 2s2 + s3)lθ1 + (−s2 + s3)lθ2 (3b)

where s = x/l, and l is the element length. The axial strain
increment in the frame element is

1ε = Bde =
1
l
[1 (4− 6s)y (2− 6s)y]

{
1e
θ1
θ2

}
. (4)

With regard to the thermal effect, the axial strain increment is
written as

1ε = 1εσ +1εth (5)

where 1εσ is the strain increment induced by stress, and 1εth is
thermal strain increment.

1εth = α(Tt − Ta) (6)

where α = α(T ) is the thermal expansion coefficient, and Tt =
Tt (s, y) and Ta = Ta (s, y) represent the temperature distribution
at time t and ta, respectively.
The virtual internal energy increment of the planar frame is

δUe =
∫
V
δ(1ε)TσdV = δ(de)Tfinte (7)

where σ and finte are the total stresses at time t and the internal
force of the element. The incremental internal force 1finte in each
time increment is written as

1finte =
∫

BT1σdV =
∫

BTE1εσdV =
∫

BTE(1ε −1εth)dV (8)
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