
Journal of Constructional Steel Research 65 (2009) 631–640

Contents lists available at ScienceDirect

Journal of Constructional Steel Research

journal homepage: www.elsevier.com/locate/jcsr

Mechanical model for the analysis of steel frames with semi rigid joints
A.N.T. Ihaddoudène a, M. Saidani b,∗, M. Chemrouk a
a Built Environment Research Laboratory, Faculty of Civil Engineering, U.S.T.H.B., Algiers, Algeria
b Faculty of Engineering and Computing, Department of Built Environment, Coventry University, Coventry, England, UK

a r t i c l e i n f o

Article history:
Received 21 November 2007
Accepted 20 August 2008

Keywords:
Rigid
Semi-rigid
Connection
Mechanical model
Frames
Plastic hinges

a b s t r a c t

The rigidity of joints is known to affect the structural behaviour of steel frames. Accurate determination of
such rigiditymay require the use of laborious numericalmodeling (such as Finite Element) of the joint. The
main objective of this paper is to present a mechanical model in order to take into account the influence
of the joints on the behaviour of steel frames. This mechanical model is based on the analogy of three
springs, and a non deformable element of nodes describing relative displacements and rotations between
the nodes and the elements of the structure. For this model, a stiffness matrix and a nodal load vector of a
beam element in bending are obtained. Examples are provided to illustrate the simplicity and efficiency
of the method.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In the traditional analysis and design of steel structures, frames
are analysed and designed under the simplifications that the
connections behave either as pinned or rigid. The use of an ideally
pinned condition implies that no moment will be transmitted
from beam to column. The fully rigid condition implies that no
rotation occurs between the joining members [1,2]. However,
these two cases of behaviour are extreme asmost connections used
in common practice transmit some partial moment.
To assess the real behaviour of the frame, it is therefore

necessary to incorporate the effect of connection flexibility of
the frame [2–6]. The flexibility of connections depend on the
deformation of the fasteners (bolts, end plate, angle flange
cleats, etc.), the type of connections, their position and the local
deformation of the assembled elements [7–9].
Since the connection details consist of member components,

any change in these connection details may lead to significant
variations in the connection characteristics [10–12].
Some researchers such as Kishi and Chen [9], have collected

available experimental results and constructed steel connection
data banks that provided the user with not only the test data,
but also some predictive equations. However, not every structural
engineer has access to the database of experimental results. Also,
when the connections detailing, beam and column sizes used
in frame analysis are significantly different from the available
experiments, however, the connection behaviour retrieved from a
database may not, correctly, represent the actual connections.
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De Lima et al. [13] used the concept of neural networks to
determine the initial stiffness of beam-to-column joints. However,
the method was limited in scope and the authors did not back
their resultswith test data to validate themethoddeveloped. Lopez
et al. [14] developed a model that takes into account the rigidity of
the joints in the analysis of single-layer lattice domes. Themodel is
based on both numericalmodel and test results. Del Savio et al. [15]
developed amodel based on a parametric study of semi-rigid joints
used for the analysis of Vierendeel girders.
Experimental results [1,7,8,10–13,16] obtained for beam-

column connections show that the moment–rotation relationship
is non-linear for all types of connections and varies depending on
connection flexibility. It is presented in its exponential form [17,
18] by the equation:

Θ = kMα. (1)

Because of the high number of the parameters influencing
the behaviour of connections, accurate modeling of such
behaviour becomes complex. Globally, initial rigidity and the
ultimate moment of the connection are the two most significant
characteristics to define the behaviour of a joint [2,17,18].

2. Mechanical model

The adopted model [17] is based on the analogy of three
springs (two translational and one rotational) by considering the
concept of a non-deformable element of node describing relative
displacements and rotations between the nodes and the elements
of the structure.
The nodes of the structure in Fig. 1(a) are represented by a

non deformable frame as in the Fig. 1(b) where the nodes are
modeled as translational and rotational springs connected to the
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Notations

kc; ks Secant rigidity and secant flexibility of the connec-
tion, respectively (functions of rotation Θ and mo-
mentM)

k1, k2 Elastic constants of the springs in rotation at nodes
‘‘i’’ and ‘‘j’’, respectively

k(i) Flexibility in stage ‘‘i’’
nl,ml Distance to left support and right support respec-

tively, from gravity centre Ψ
ω Flexural rigidity per unit length, EIl
∆i Relative vertical displacement between nodes ‘‘i’’

and ‘‘j’’
Vi,Mi, Vj,Mj Reactions at nodes ‘‘i’’ and ‘‘j’’, in local reference.
Fe Vector force in local reference.
Ψ Area of bending moment diagram for a simply

supported beam.
∆W (i) Increment of loads at stage ‘‘i’’

bar element (see Fig. 1(c)). Thus, the ends of the bar element
possess relative displacements and relative rotations.
The objective of the mechanical model is to derive in a simple

way, both the stiffness matrix and the load nodal vector. For this,
the bar element subjected to transversal loads Fig. 2(a) with semi-
rigid joints (Fig. 2(b)) is considered.

2.1. Equilibrium equations and rotational deformations

The equilibrium equations may be written as:
Vi + Vj − R = 0 (2a)

Mi +Mj + RZ − Vjl = 0. (2b)
In bending, the rotational spring is the essential component and

hence the equations of rotational deformations can be expressed
as:

Θi =
∆i

l
+
mΨ
ωl
+
Mi
3ω
+ k1Mα

i −
Mj
6ω

(3a)

Θj =
∆i

l
−
nΨ
ωl
+
Mj
3ω
+ k2Mα

j −
Mi
6ω
. (3b)

2.2. Stiffness matrix

The displacement method, which is based on a stiffness matrix,
is used to analyse the frame elements.
To establish themodified stiffnessmatrix considering the effect

of connection flexibility, the direct method is used, i.e. the rigidity
kij of an element ‘‘ij’’ is the reaction in the direction ‘‘j’’ due to a unit
displacement in the direction ‘‘i’’.
The stiffness matrix, Ke, in local coordinates is given by:

Ke =

k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44

 . (4)

(a) Semi rigid joints. (b) Non deformable node. (c) Bar element and non deformable node.

Fig. 1. Mechanical model adopted.

(a) Bar element under transversal loads. (b) Different rotations of the node ‘‘i’’.

Fig. 2. Non-deformable node with semi-rigid joints.
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