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a b s t r a c t

Several structures employmemberswith a deformable connection between two components, also known
as partial interaction or interlayer slip. Classical examples include composite steel–concrete beams and
glued or nailed timber beams. Most of the numerical research in this topic, however, has been focused
on composite beams with material nonlinearity. In some situations these members may be subjected to
compression and bending, for which 2nd order effects should be taken into account. The purpose of this
work is to develop and test a displacement-based finite element model for the nonlinear material and
geometrical analysis of composite beam–columns with interlayer slip. The finite element is based on a
total Lagrangian description, in the context of large displacements, small strains and moderate rotations.
The robustness and accuracy of the proposed scheme is verified against examples from the literature.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

It is common practice in civil engineering to employ members
which consist of an assemblage of two or more different elements
connected by a deformable interface. Examples are composite
steel–concrete beams, where the connection is normally done by
shear connectors welded to the steel beam and embedded in the
concrete, and composite wood beams, glued or connected by nails
or other devices.
Early works dealing with composite beams with interlayer

slip focused on the development of closed-form solutions. The
differential equations for the case of linear elastic composite beams
with linear connection stiffness were originally developed in the
early 50’s [1]. Numerical methods have been employed to solve
more general problems of composite beams, mostly by the finite
element method. Displacement-based [2,3], force-based [4] and
mixed [5,6] finite elements have been largely used in problems
with linear and nonlinearmaterial behaviour. A comparative study
of different schemes is given by Ranzi et al. [7].
Partly because of the assumptions commonly used in the

analysis of composite steel–concrete beams, few works have
dealt with geometrical nonlinear analysis on beam–columns
with interlayer slip, or even with the influence of the normal
force without 2nd order effects. However, such situation is not
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uncommon, as elements with a deformable connection may
eventually be part of a frame resisting vertical and lateral loads.
Nonlinear geometric effects were addressed by Girhammar

and Gopu [8], who obtained the differential equations and
boundary conditions for beam–columns with interlayer slip
and linear material behaviour. Later, Girhammar and Pan [9]
extended the work on these closed-form solutions, discussing
the consideration of different boundary conditions and buckling
lengths of beam–columns with interlayer slip. Xu and Wu [10]
developed the analytical formulation for geometric nonlinear
problems within the context of Timoshenko beam theory.
Numerical solutions for the geometric nonlinear problem of

beams with deformable connection were investigated by Čas
et al. [11]. These authors developed a nonlinear finite element
scheme based on strain interpolation, under Reissner beam
theory. Pi et al. [12] developed a total Lagrangian formulation
for nonlinear geometrical and material analysis of composite
beam columns and provided an extensive discussion on aspects
such as steel and concrete plasticity, importance of shear strains
and consistent linearisation of the virtual displacement principle.
The relative slip between the steel and concrete components
due to a flexible bond at the interface between the steel
and concrete components was considered as an independent
displacement. The implementation of a FE model and the
respective incremental-iterative solution was described in a
companion paper [13]. Krawczyk and coworkers [14,15] addressed
the problem analytically and developed a corotational formulation
for the nonlinear analysis of composite beams with interlayer
slips, based on Timoshenko beam theory. Very recently, Battini
et al. [16] developed the corotational transformations which can
be employed to derive formulations for large displacements and
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rotations of beams with interlayer slips. Within the corotational
framework different ‘‘local’’ elements may be employed. In their
work, they exemplified the procedure applying it to a local element
based on the exact solution and presented several examples.
There is still room for research, however, for cases of combined

material and geometrical nonlinearities. The purpose of the
present work is to develop a total Lagrangian displacement-
based finite element formulation for the nonlinear material and
geometrical analysis of composite beam–columns with interlayer
slip, which is able to handle nonlinear effects such as those
present in composite steel–concrete beam–columns. It is based on
previously developed finite element formulations, such as the ones
developed in [2], taking into account small strain and moderate
rotation effects. The slip is obtained from the beam displacements
and rotation, so there is no need for a separate slip interpolation.
At the end, some examples of nonlinear material and geometrical
composite beams are presented to illustrate the accuracy and
robustness of the finite element formulation. The results are
verified against analytical as well as numerical solutions.

2. Formulation

The kinematical hypotheses for the composite beam are based
on the Euler–Bernoulli beam theory, namely, cross sections remain
plane and normal to the reference axis after deformation. This
gives rise to expressions involving trigonometric functions on the
beam cross section rotations which are essential if one wishes to
take into account the general finite deformation case. However,
in civil engineering applications and especially with reinforced
concrete, the usual framework is that of small strains andmoderate
rotations. Dall’Asta et al. [17] and Zona et al. [18] have discussed the
mathematical aspects of these simplifications on the strain field for
nonlinear geometrical and material analysis of prestressed beams,
and equivalent assumptions are applied in the present work.
Within the simplified kinematical scheme, with superscript 0

denoting values measured at the reference axis, the in-plane beam
displacements uα and v are mathematically expressed as

uα(x, y) = u0α(x)− (y− yα)θ(x) = u
0
α(x)− (y− yα)v

0
,x

α = 1, 2 (1)

vα(x, y) = v0(x) (2)

for the displacements of the components and

s(x) = u02(x)− u
0
1(x)+ h v

0
,x (3)

for the slip s between the components (Fig. 1), with h = y2 − y1.
These equations have been employed in several formulations for
composite beam analysis in the geometric linear regime. In the
case of geometric nonlinearity, large displacements and moderate
rotations also affect the kinematics of the interlayer slip, and
the horizontal and vertical components of s should be evaluated
separately. However, if it is assumed that the slips themselves
are moderate (as the rotations), Eq. (3) remains valid for practical
engineering applications and as suchwas employed by Girhammar
and coworkers [8,9] in their analytical formulations.
Considering a total Lagrangian formulation, the only strains in

the beams are the Green–Lagrange axial strains, which in the small
strain and moderate rotation context are given by

εxα = u
0
α,x − (y− yα)v

0
,xx +

1
2
(v0,x)

2. (4)

The term involving v02,x is responsible for the nonlinear geometric
effects. Introducing the membrane and bending parts the strain
may also be expressed as

εxα = ε
0
α + (y− yα)κ (5)

with κ = −v0,xx representing the curvature.

To develop a finite element formulation for the static analysis
of composite beam–columns under the above assumptions the
Virtual Work Principle will be employed. For an isolated element
of length `, the internal virtual work is given by the sum of the
contributions of the two components plus the interface connection

δWint =
∫ `

0

(∑
α=1,2

∫
Aα
δεxασxαdAα + δsS

)
dx (6)

and the external virtual work comes from the contribution of the
surface and body loads

δWext =
∫
V

(∑
α=1,2

δuα pαx + δv py

)
dV

+

∫
Ω

(∑
α=1,2

δuα tαx + δv ty

)
dΩ (7)

with px, py denoting forces per unit volumeand tx, ty forces per unit
area.
Equality of internal and external virtual works for arbitrary

compatible displacement and strain fields is equivalent to the
weak form of equilibrium equations. Strong forms (i.e. differential
equations) may then be devised employing integration by parts
of the virtual work equation, see [2] for the linear case. From the
definition of the axial strain (4), the incremental strain is given by
differentiation as

δεxα = δu
0
α,x − (y− yα)δv

0
,xx + v

0
x δv

0
x . (8)

Introducing (8) in the internal virtual work expression, and defin-
ing the normal force and bending moment on each component as

Nα =
∫
Aα
σxαdAα (9)

Mα =
∫
Aα
σxα(y− yα)dAα (10)

the internal virtual work may be rewritten in matrix form as

δWint =
∫ `

0
δεtσdx (11)

with the generalised strains and stresses given by

εT =
[
ε01 ε02 κ s

]
and σT =

[
N1 N2 M S

]
. (12)

Collecting the displacements in vector u

uT =
[
u01 u02 v0

]
(13)

the generalised strains are given by

ε = ∂u (14)

with matrix ∂ given by

∂ =


∂x 0

1
2
v0,x ∂x

0 ∂x
1
2
v0,x ∂x

0 0 −∂xx
−1 1 h ∂x

 . (15)

The generalised strain variations are given in a similar fashion by

δε = ∂̄δu (16)

with matrix ∂̄ given by

∂̄ =


∂x 0 v0,x ∂x
0 ∂x v0,x ∂x
0 0 −∂xx
−1 1 h ∂x

 . (17)
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