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a b s t r a c t

The ultimate capacity of beams prestressedwith external slipping tendons cannot be evaluated by a local
analysis of the critical sections and a nonlinear analysis of the whole beam-tendon structural system is
required. Since this type of analysis is complex, simplified approaches are of great assistance to engineers
in the design process. In this work a new simplified method is introduced for evaluating the tendon
traction increment at collapse and consequently the beam flexural strengthwithout requiring a nonlinear
analysis of the whole beam-tendon structural system. A detailed description of the proposed approach
is given and some applications of practical interest to externally prestressed steel–concrete composite
beams are discussed.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Externally prestressed steel–concrete composite members
have been used since the late 1950s in buildings and bridge
construction [1,2]. In addition, external post-tensioning has been
extensively applied in existing bridges to reinforce damaged
structures or to increase the ultimate capacity when larger
than designed loads are applied [3,4]. External prestressing in
steel–concrete composite beams presents many advantages [5],
such as: enlarged elastic range of behaviour, increased ultimate
capacity, improved fatigue behaviour, limitation of deflections,
control of concrete slab cracking in the hogging regions of
continuous beams, reduction of structural weight with benefits
on construction economy and aesthetic value. The analysis of
externally prestressed beams involves some specific issues [6–8].
Differently from conventional bonded prestressing, the stress of
external tendons slipping at saddle points cannot be estimated
by a local sectional analysis. A nonlinear analysis of the whole
structure is required to correctly evaluate the tendon stress at
failure and consequently the beam flexural strength. Since this
type of analysis is complex, simplified approaches are of important
help for engineers in the design process.
In the past various simplified formulas, mostly based on

experimental tests, have been proposed in order to estimate
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the stress increment of the tendon at collapse in externally
prestressed concrete beams (an extensive review of published
works on this topic can be found in [9]). Many of these simplified
approacheswere criticized since they do not give clear information
on collapse modes and in some cases predicted results are not
sufficiently conservative or accurate. Recently the authors of [9]
proposed a new simplified method for the analysis of concrete
beams prestressed with external tendons that uses a simplified
description of deformations at collapse. The proposed method is
based on the observation that the shapes of the axial strain and
curvature distributions at collapse donot notably change for beams
with the same structural configuration, tendon path and external
loads. This method can be applied to any structural configuration,
tendon layout and loading condition, provided that certain values
of curvature and axial strain shape at collapse are given. Differently
from previous methods for externally prestressed concrete beams,
the proposed approach gives a clear description of collapse modes
and comprehensive information, i.e., tendon traction increment,
position of the critical section where collapse occurs, collapse
load multiplier and thus flexural bearing capacity. Applications to
realistic beams used for concrete bridge constructions showed a
very good approximation of the results obtained by nonlinear finite
element analysis. This simplified approach is consistent with the
conservative prescriptions of the European code [10] that allows
no increase of prestressing stress at ultimate unless a nonlinear
analysis of thewhole beam-tendon structural system is performed.
In fact the proposed simplified method can be considered as a

0143-974X/$ – see front matter© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jcsr.2008.07.015

http://www.elsevier.com/locate/jcsr
http://www.elsevier.com/locate/jcsr
mailto:alessandro.zona@unicam.it
http://dx.doi.org/10.1016/j.jcsr.2008.07.015


A. Zona et al. / Journal of Constructional Steel Research 65 (2009) 308–313 309

Fig. 1. Beam model with external prestressing.

simplified nonlinear analysis for the preliminary design process,
leaving the more complex and accurate nonlinear analysis to the
final structural verification.
While the debate over simplified methods for concrete beams

with external prestressing evolved during the last decades, fewer
indications were specifically provided for externally prestressed
steel–concrete composite beams, mostly limited to specific cases,
e.g. [2,11]. Only recently Chen and Gu [12] presented a more
general approach for evaluating the incremental prestressing at
the ultimate state based on a plastic analysis of the prestressed
beam. Using their formulation the ultimate tendon stress in
simply supported beams can be predicted as long as the ultimate
deflection is determined. A different way is followed in this paper,
where the simplified method presented in [9] is extended to
steel–concrete composite beams. A detailed analytical description
of the method is provided. Afterward comparisons between the
results given by the proposed method and by a nonlinear finite
element formulation [13] previously validated by comparisons
with experimental tests, are illustrated. The comparisons are
developed for simply supported beams with draped tendon,
considering different span-to-depth ratios and span lengths.

2. Proposed method

2.1. Review of the adopted analytical model for externally prestressed
beams

The proposed simplified method uses a general analytical
model for externally prestressed beams with slipping tendons
previously introduced [7,8] and concisely reviewed in this section
for reader’s convenience. The finite element formulation of this
analytical model is found in [13].
A beam with symmetrical cross section is considered. An

orthogonal reference frame {O; X, Y , Z} is introduced: the Z-axis
is parallel to the beam axis and the vertical plane YZ is the plane
of geometric, material and load symmetry of the structure (Fig. 1).
Unit vectors i, j, k are parallel to X, Y and Z respectively. The cross
section of the beam is rigid in its own plane and remains plane
and orthogonal to the beam axis after deformation. Perfect bond
acts between concrete and reinforcements. External prestressing
tendons are symmetrically arranged with respect to the symmetry
plane YZ. Each couple of tendons is considered as one single
resultant tendon with path contained in the symmetry plane. For
simplicity, only one resultant tendon is considered in the following
discussion. More complex tendon layouts can be considered by a
straightforward extension of the model.
The previous assumptions lead to the following description

of the displacement u of a point of the beam (i.e. only in-plane
bending occurs):

u (y, z) = v (z) j+
[
w (z)− yv′ (z)

]
k (1)

where w is the axial displacement of a reference fibre of ordinate
zero and v is the vertical displacement. The only non-zero strain
component in the beam is the axial strain ε

ε (y, z) = ε0 (z)+ yθ (z) (2)

where ε0 (z) = w′ (z) is the axial strain at the reference fibre
of ordinate zero in the cross-section and θ (z) = −v′′ (z) is
the curvature. Once that general nonlinear constitutive laws are
introduced for concrete and reinforcement steel, the resultants
of the stress in the beam are the axial force NR and the bending
momentMR:

NR (ε0, θ) =
∫
A
σ (ε) dA (3)

MR (ε0, θ) =
∫
A
yσ (ε) dA (4)

where the bending moment is computed with respect to the
reference fibre of ordinate y = 0.
The path of the tendon is assigned by D + 1 points where the

points from 1 to D − 1 locate the positions of the intermediate
deviators and the points 0 and D locate the positions of the end
anchorages:

Qd = ydj+ zdk (5)

where yd and zd (d = 0, . . . ,D) are the coordinates of the d-
th deviator of the tendon. It is assumed that the tendon traces a
rectilinear line between two subsequent saddles. The total length
of the tendon in the undeformed state is given by

Lt =
D∑
d=1

∣∣Qd − Qd−1
∣∣ = D∑

d=1

√
[1d (y)]2 + [1d (z)]2 (6)

where the operator 1d (s) applied to the generic scalar quantity s
function of z is defined as:

1d (s) = s (zd)− s (zd−1) . (7)

After the deformation of the beam the deviators assume the
new positions

qd = [yd + v (zd)] j+
{
zd + w (zd)− ydv′ (zd)

}
k (8)

where wd and vd are the axial and vertical components of the
displacement of the d-th deviator. Consequently, the total length
of the tendon in the deformed state is given by:

lt =
D∑
d=1

∣∣qd − qd−1
∣∣

=

D∑
d=1

√
[1d (y)+1d (v)]2 + [1d (z)+1d (w)−1d (yv′)]2. (9)

Assuming that the tendon can slip with negligible friction at
saddle points, as happens in many real cases, e.g. [14], its strain
can be calculated by the ratio between the global stretching of
the tendon path and its initial length, so that it depends on the
displacement field of the whole beam. Since the displacements
considered in the beam description are assumed to be very small,
the following linear expression is adopted for the deformed tendon
length, in order to obtain a consistent formulation and to avoid
making the problem nonlinear by introducing negligible terms
[7,8]:

εt =
lt − Lt
Lt
∼=
1
Lt

D∑
d=1

{
αd
[
1d (w)−1d

(
yv′
)]
+ βd1d (v)

}
(10)
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