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Recent advances on postbuckling analyses of thin-walled structures: Beams,
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Abstract

The lateral postbuckling response of thin-walled structures such as bars and frames with members having steel rolled shapes as well as circular
cylindrical shells under axial compression is thoroughly reconsidered. More specifically via a simple and very efficient technique it is found that
beams with rolled shapes (symmetric or non symmetric) under uniform bending and axial compression exhibit a stable lateral–torsional secondary
path with limited margins of postbuckling strength. New findings for the static and dynamic stability of frames with crooked steel members – due
to the presence of residual stresses – are also reported. It is comprehensively established that the coupling effect due to initial crookedness and
loading eccentricity may have a beneficial effect on the load-carrying capacity of the frames. Moreover, simple mechanical models are proposed
for simulating the buckling mechanism of axially compressed circular cylindrical shells. Very recently Bodner and Rubin proposed an 1-DOF
mechanical model whose buckling parameters correlated to those of the shells by using an empirical formula based on experimentally observed
shell buckling loads. In the present analysis a new 2-DOF model for the static and dynamic buckling of axially compressed circular cylindrical
shells, which can include mode coupling, is presented.
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1. Introduction

In the last decades considerable attention has been given
to the effect of nonlinearities on the stability of structural
systems. This is justified by the fact that application of a
linear (bifurcational) analysis may fail to predict the actual
(critical) buckling load. Indeed, this is true when the critical
(bifurcation) point is unstable implying a serious reduction of
the load-carrying capacity in case of the existence of initial
geometric imperfections. Such imperfections always exist in
steel structures due to the presence of residual stresses in steel
beams with rolled shapes. On the other hand, one should note
that the majority of actual systems, if accurately modeled,
exhibit a limit point instability rather than bifurcational
buckling. This requires a complete nonlinear stability analysis
for estimating the exact buckling load and the associated load-
carrying capacity.
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The present analysis dealing with thin-walled structures
focuses attention on steel beams and frames with members
consisting of rolled shape cross-sections as well as on circular
cylindrical shells under axial compression. Reviewing the state-
of-the-art up to 1994, to the best knowledge of the author,
there was not any nonlinear stability (postbuckling) analysis of
steel beams or beam–columns with rolled shape cross sections
(either non symmetric or symmetric) subjected to lateral or
lateral–torsional buckling. Indeed, the existing studies referred
to linear analyses, which cannot give information about the
stability of the critical bifurcational state.

During the last decade Kounadis and his associates presented
several studies dealing with the postbuckling analyses of simply
supported steel beams or beam–columns with rolled shapes
subjected to lateral or flexural–torsional buckling including the
effect of the cross-section warping. Such analyses based on a
nonlinear expression for the curvature led to the establishment
of the initial postbuckling equilibrium path. The following
were discussed: (a) cases with doubly symmetrical cross-
sections [1] and with monosymmetric cross-sections [2–
4], which fail either through flexural (Euler) buckling or
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flexural–torsional (non-Eulerian) buckling, and (b) cases with
open asymmetric thin-walled cross-sections [5], which always
fail by flexural–torsional buckling. Using a simple and very
efficient (approximate) analytic technique [6] it was established
that the critical bifurcational state is stable with a very shallow
postbuckling path with very limited margins of postbuckling
strength. Thus there is no imperfection sensitivity and the
critical buckling load defines the actual load-carrying capacity.

Subsequently, the static and dynamic buckling of a two-bar
steel frame with initially crooked bars (due to residual stresses),
which is subjected to an eccentrically applied load at each joint
was properly studied. The individual effect of imperfection sen-
sitivity for static and dynamic loading of the initial (crooked-
ness) curvature as well as of the loading eccentricity was fully
assessed. Moreover, by a thorough discussion of the combined
effect of these two imperfection parameters, the unexpected re-
sult was found that a suitable arrangement of the bar initial
curvature in the frame configuration, may lead to its maximum
load-carrying capacity associated with an asymmetric bifurca-
tion [7,8]. Such a beneficial (stabilizing) effect of imperfections
on the buckling load is also experienced in case of a dynamic
(step) loading [9,10].

The third type of thin-walled structures refer to the
postbuckling analysis of circular cylindrical shells under axial
compression. Early studies on these shells have shown that
their actual load-carrying capacity can be safely obtained only
via a nonlinear analysis since in some cases classical (linear)
analyses lead to completely unacceptable results. On the other
hand, extensive tests have shown that the theoretically predicted
minimum postbuckling (peak) load is unrealistically low to be
useful as a guide for designers for all but the very thin shells.
The discrepancy between test and theory rendered necessary
application of Koiter’s or other theory combined with empirical
results. According to Koiter’s theory, the limit point (peak) load
for a circular cylindrical shell depends on Poisson’s ratio and
mainly on small geometric imperfections, whose variety and
measurement has been the subject of numerous papers [11,12].

Recently, Calladine [13] proposed an empirical formula for
the limit point (peak) load based on test results. A possible way
of reconciling Koiter’s load with Calladine’s empirical formula
is to assume that geometric imperfections in Koiter’s analysis
depend on the ratio (t/R) of thickness t to the radius R of the
shell.

Despite the existence of more than 2000 studies devoted
to the buckling of axially compressed thin-walled circular
cylindrical shells, the relative research continues in an attempt
to improve existing treatments. A principal reason for this
interest is that the geometric imperfections have not as yet
been fully identified. According to test observations by Singer
et al. [14,15] it was deduced that the onset of buckling in
the above shells is highly localized over a small region.
Thereafter, the buckling deformation assumes a diamond-
shaped pattern, which is progressively repeated in neighbouring
sections, while the load drops suddenly at a fixed overall
shortening. It was also found that the membrane response due
to such localized buckling is nonlinear and analogous to a
nonlinear (soft) spring. Very recently, Bodner and Rubin [16]

on the basis of testing emptied beer cans concluded that
the buckling process is that of a local longitudinal strip
supported at its middle by an elastic foundation which exhibits
snap-through caused by shallow arch-like behavior in the
circumferential direction. Bodner and Rubin presented an
interesting re-examination of this problem by using a single
mode mechanical model [similar to that of [17–19]] which
shows some of the salient buckling characteristics of uniformly
axially compressed circular cylindrical shells.

In the present paper, being an extension of the last
work by Bodner and Rubin, two mechanical models are
proposed for modeling the buckling of axially compressed
circular cylindrical shells under static and dynamic (step)
loading. The first one, much simpler than the single model
of Bodner and Rubin, neglects the change of the bar length
without any practical effect on the accuracy of the obtained
results [20]. The second mechanical model of 2-DOF (two
degrees of freedom) can include the mode coupling effect [9,
21]. Numerical examples for the three types of the above
thin-walled structures illustrate the simplicity, efficiency and
reliability of the methodology proposed herein.

2. Mathematical analysis

In this section attention will be focused on the description
of the basic equations governing the postbuckling response of
the above three types of elastic thin-walled structures. Since
this analysis is addressed to engineers not necessarily familiar
with rudiments of the mathematical aspects of stability, some
care has been taken to avoid pertinent technicalities. However,
more details on the mathematical procedure can be found in the
related references cited in the text.

2.1. Bars with rolled shape cross-sections

Consider the simply supported bar with an open thin-walled
asymmetric cross-section shown in Fig. 1 which is subjected to
a compressive centrally applied load P . For such a general type
of cross-section (whose centroid C does not coincide with the
shear center S) the failure always occurs by flexural–torsional
instability. Subsequently, the formulation and notation used by
Timoshenko and Gere [22] is adopted. Denoting by x and y
the principal centroidal axes of the cross-section, xo and yo
are the coordinates of the shear center S. Consider the bar in
a slightly deformed configuration associated with a translation
and a rotation of the cross-section (Fig. 1). The translation is
defined by the deflections u (along the axis x) and υ (along
the axis y) of the shear center S as well as of the centroid C .
Namely, the shear center moves from S to S′, while the centroid
moves from C to C ′. The rotation of the cross-section about the
new position of the shear center S′ is denoted by ϕ and the final
position of the centroid by C ′′ [3,5]. Since, the total deflections
of the centroid C are u+ yoϕ and υ−xoϕ the bending moments
of the simply supported bar due to the central thrust P are
My = P(u + yoϕ) and Mx = P(υo − xoϕ). One can show
also that the twisting moment Mzz is equal to [23]

Mzz = Pyo
du

dz
− Pxo

dυ
dz

+
P

A
Ip

dϕ
dz

(1)

where A is the area of cross-section and Ip = Ix + Iy .
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