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Approximate formulae for natural periods of plane steel frames
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Abstract

Approximate formulae for determining by hand with a high enough accuracy the first three natural periods of vibration of plane steel
unbraced and braced frames are provided. These formulae are based onthe modeling of a plane steel frame as an equivalent cantilever beam
for which analytical expressions for the natural periods are available. Extensive parametric studies involving the finite element computation of
the first three natural periods of 110 plane steel unbraced and braced frames are employed to establish correction factors for the equivalent beam
modeling formulae which are functions of the number of stories and bays of the frame. The resulting corrected formulae permit a highly accurate
determination of the first three natural periods of plane steel frames.
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1. Introduction

Seismic building codes, such as UBC [1] or EC 8 [2],
provide analytical expressions for the computation of the
design seismic acceleration in terms of the natural period of
vibration of the structure. Thus, the design base shear can
be computed easily by either multiplying this acceleration
by the structural mass if only the first mode participates in
the response, or by modal synthesis if the first few modes
participate in the response. In the first case, a knowledge of
the first (fundamental) period is necessary, while in the second
case a knowledge of the first few natural periods of the structure
is required. Lopez and Cruz [3] have established empirical
formulae providing the required number of the first few modes
necessary for obtaining the seismic response of building frames
with a relative error of 5% and 10%, while seismic building
codes [1,2] require the participation in the response of so many
modes as to have at least a participation of 90% of the total
structural mass.

Seismic codes, such as UBC [1] or EC 8 [2], provide very
simple but crude empirical formulae for the fundamental period
of structures in terms of their material (steel or reinforced
concrete), structural type (frame, shear wall, etc.) and height.
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Goel and Chopra [4], on the basis of experimental data gathered
from eight earthquakes, were able to improve the accuracy of
these formulae by modifying their coefficients.

A more rational way of constructing formulae for the hand
computation of natural periods of vibrations of tall plane
wall -frame buildings is to establish relations to model those
buildings as equivalent flexural-shear cantilever beams for
which the natural periods are available in analytical form in
standard structural dynamics texts. One can mention here, e.g.,
the works of Coull [5], Rosman [6], Rutenberg [7], Stafford
Smith and Crowe [8], Li et al. [9] and Zalka [10]. The
advantage of those formulae is that they enable the designer to
rapidly compute natural periods by hand during the preliminary
design stage. This advantage is not present in those methods
of determining natural periods of large order plane or space
frames and trusses by modeling them as continuous beams and
employing the finite element method. In those methods the
goal is to drastically reduce the computational work and not to
provide simple formulae for the periods. For a comprehensive
review on the subject, one can consult Noor [11].

In this work approximate formulae for determining by hand
the first threenatural periods of vibration of plane steel frames
are presented. Formulae of high enough accuracy for both
unbraced and braced frames are based on them being modeled
as equivalent cantilever beams, in accordance with the approach
of Stafford Smith and Crowe [8] for which analytic expressions
for natural periods are available. These formulae are modified
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by some correction factors, functions of the number of frame
stories and bays, which are constructed with the aid of extensive
parametric studies involving finite element computation of
the first three natural periods of 110 plane steel unbraced
and braced frames. Thus, the present work is analogous to
that of Goel and Chopra [4] in the sense that, through data
from numerical experiments,improvements in the accuracy of
existing formulae are realized. In this work, frames of up to 15
stories are considered and thus the first three modes are enough
to satisfy the 90% vibrating mass criterion of seismic codes [1,
2] as well as the empirical formulae of Lopez and Cruz [3].

2. Free vibrations of a flexural-shear beam

The free vibrations of a flexural-shear prismatic beam are
governed by the equation [8]

E I
∂4v

∂x4
− E I (αk)2 ∂2v

∂x2
+ m

∂2v

∂ t2
= 0 (1)

where E I and m are the flexural rigidity and mass per unit
length, respectively, of the beam,v = v(x, t) is the lateral
deflection of the beam,x andt denote axial coordinate and time,
respectively, andαk expresses a shear rigidity to be defined
explicitly later on.

The above equation can be decomposed into the equivalent
system of the two equations
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∂4v f

∂x4 + m
∂2v f

∂ t2 = 0 (2)
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for which

v = v1 + v2

v1 = [(k2 − 1)/k2]v f , v2 = (1/k2)vs f
(4)

with v f denoting the deflection component due purely to
flexural motion and thevs f deflection component due to a
coupled shear-flexural motion.

For acantilever beam of lengthH with the fixed end atx = 0
and the free end atx = H , the boundary conditions read [12]

v(0, t) = 0, ∂v(0, t)/∂x = 0

V (H, t) = 0, M(H, t) = 0
(5)

where V and M denote shear force and bending moment,
respectively. Thus, Eq.(2), describing flexural free vibrations,
yields the eigenvalue equation [12]

1 + cosλ f H coshλ f H = 0 (6)

whose solution in terms of its eigenvaluesλ f is [12]

(λ f H )1 = 1.875, (λ f H )2 = 4.694

(λ f H )n ∼= (n − 0.5)π, n = 3, 4, . . .
(7)

where

λ4
f = ω2

f m/E I (8)

with ω f being the natural frequency of flexural vibration. Eq.
(3) on the other hand, describing coupled flexural-shear free
vibrations, yields the eigenvalue equation [7]
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for which

λ2
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1λ

2
2 = λ4

s f = ω2
s f m/E I (10)

with ωs f being the natural frequency of coupled flexural-shear
vibrations.

According to Rutenberg [7] and the Southwell–Dunkerley
approximation, one can finally obtain the natural periodsT of
free vibrations governed by Eq.(1) in the form

T = (2π/λ2)
√

m/E I (11)

where
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Approximate, yet reasonablyaccurate, solutions of Eq.(9)
have the form [8]

(λs f H )2 ∼= (λ f H )2[1 + (kαH/λ f H )]1/2, kαH < 6 (13)

(λs f H )2 ∼= (n − 0.5)π(1 + kαH ), kαH ≥ 6. (14)

3. Plane frame structures as equivalent beams

Plane orthogonal, braced or unbraced frames, shear walls
or coupled frame-wall systems fixed on the ground can be
modeled as equivalent flexural-shear cantilever beams. This
equivalence can be established by expressingE I andαk of Eq.
(1) in terms of the geometrical and material parameters of the
frame or the frame-wall system. Following [8] one has that, for

α = [G A/E I ]1/2, k = [1 + (E I/E Ac2)]1/2 (15)

the equivalent flexural-shear beam can be established provided
the three parametersE I , E Ac2 and G A can be expressed in
terms of theproperties of the frame or the frame-wall system.

Thus, for an unbraced bay of a frame,E I andE Ac2 of the
equivalent beam can be expressed as [8]

E I =
n∑

j=1

(E I ) j , E Ac2 =
n∑

j=1

(E Ac2) j (16)

where(E I ) j is the flexural rigidity of thej th vertical member
(column or wall) of the system,(E A) j the axialrigidity of the
j th vertical member,(c) j the distance of thej th column to the
center of the area of the vertical members of the lateral load
resisting frame, andn the total number of vertical members of
the frame. On the other hand,G A of the equivalent beam can
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