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a b s t r a c t

Railroads use a set of rail inspection teams to periodically examine the status of rail tracks across the
railroad network. The rail inspection scheduling problem (RISP) is a large-scale routing and scheduling
problem where thousands of inspection tasks are to be scheduled subject to many complex constraints.
This paper proposes a vehicle routing problem formulation for RISP and develops a customized heuristic
algorithm to effectively solve the problem. Real-world case studies show that the proposed approach sig-
nificantly outperforms commercial solvers and the state-of-art manual solution approach. The proposed
approach has been adopted by a Class I railroad to enhance safety and operational efficiency.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Every year, North American railroads spend millions of dollars
on periodic rail inspection. A fleet of rail inspection teams (includ-
ing inspection vehicles and associated crews) travel on the railroad
network and examine rail tracks for external and internal rail de-
fects (such as kidney defects, wheelburn defect, head checking
and squats) using visual inspection and technologies such as
induction and ultrasonic devices (Cannon et al., 2003). According
to the Federal Railroad Administration (FRA) Office of Safety
Analysis (2014), track defects are one of the leading causes of train
accidents in the United States. Among the 1747 train accidents that
happened in 2012, 577 (or 33.03%) were caused by track defects,
resulting in a total reportable damage of $102.9 million. Therefore,
it is very important to optimally schedule the rail inspection so
that the rail defects can be identified and repaired in time.

In practice, the railroad network is divided into hundreds of
segments for the sake of rail inspection. Every segment should be
inspected periodically at a certain frequency (which generally var-
ies from once a few weeks to once a year) to ensure the safety of
train operations. In this paper, we call each inspection activity a
‘‘task’’. A rail inspection schedule includes the assignment of tasks
to inspection teams as well as the start times of the tasks such that

all required inspection frequencies are satisfied. The routes of
inspection teams should be optimized so that less time is spent
traveling between tasks that may be a thousand miles apart. It
should also satisfy a variety of other business constraints such as
geographic preference, non-simultaneity and time window con-
straints. The scheduling horizon is normally short (e.g., a few
weeks), while the schedule is updated frequently (sometimes
daily) to address unexpected events (e.g., the delay of a task or
the breakdown of a vehicle). Occasionally, long-term planning is
also needed for resource allocation purposes (e.g., to determine
the optimal number of inspection teams and to balance the work-
load throughout the year).

Practical rail inspection scheduling problem (RISP) instances are
usually very large-scale and complex, involving hundreds or thou-
sands of tasks, tens of inspection teams and thousands of business
constraints. Current practice of the railroad industry mostly relies
on the experience and judgment of experts. The solution process
usually takes a long time but the solution quality may remain
unsatisfactory. This paper, therefore, proposes a mathematical
model and a solution algorithm to systematically and effectively
solve RISP and help the railroads improve safety and operational
efficiency.

The remainder of the paper is organized as follows. Section 2
reviews previous studies related to RISP. Section 3 presents a
vehicle routing problem (VRP) based formulation of RISP. Section 4
presents the solution algorithms. Section 5 conducts case studies
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with real-world data. Section 6 concludes the paper and discusses
future research directions.

2. Literature review

Very limited research has been done on problems similar to
RISP. Budai et al. (2006) solved a preventive maintenance schedul-
ing problem where both short-duration routine activities and long-
duration projects are scheduled on a single track segment, and
hence no routing aspect was considered. Liebchen et al. (2007) dis-
cussed how a periodic event scheduling problem can be extended
to address these aspects in railway timetabling; however, a com-
plete model formulation or a solution algorithm was not presented
in their paper. Morales et al. (2008) studied a similar geometry
inspection scheduling problem which addresses not only the
inspection frequency requirement, but also crew change point con-
straints and track restrictions (e.g., travel direction requirements,
sharp-turn restrictions, and multiple tracks) for rail-bound inspec-
tion vehicles. The inspection territory of each vehicle was pre-
determined, and the model scheduled only one vehicle at a time.
The model enumerated all possible day routes as decision vari-
ables, and could usually be solved by a commercial integer pro-
gramming solver within 12 hours. What-if analysis was used to
reassign territories among inspection teams in order to balance
workload and improve the solution. Derinkuyu et al. (2010) pre-
sented a rail grinding scheduling problem and developed an opti-
mization model whose objective was to minimize the deviations
of grinding activities from a given set of desired maintenance fre-
quencies. Retharekar and Mobasher (2010) presented a preventive
maintenance scheduling problem. Constraints related to various
factors such as train schedules and desired maintenance frequen-
cies are considered. Heuristic algorithms were developed in the
above two studies but the details were not disclosed.

Peng et al. (2010) and Peng and Ouyang (2012) studied track
maintenance scheduling problems (TMSP) in a railroad network.
Side constraints such as mutual exclusion and time window con-
straints were considered. The problems were formulated into
time-space network models and were solved using multiple-neigh-
borhood search. Their proposed approach has been applied in prac-
tice in the past few years. Both TMSP and RISP are routing and
scheduling problems, where inspection or maintenance tasks
across the network are scheduled in a horizon and are assigned
to a set of teams. The two problems also have some similar side
constraints such as time window constraints. However, they have
two major differences which significantly affect the selection of
model and algorithm. First, the durations of all tasks in TMSP in
Peng et al. (2010) and Peng and Ouyang (2012) are integer num-
bers of weeks. The travel time between tasks occur during week-
ends and can be neglected in the schedule. As such, the
scheduling horizon of TMSP can be naturally discretized into
weeks, and solution approaches based on time-space networks
and block interchange algorithms are suitable. In RISP, the tasks
have continuous durations that range from less than an hour to a
few weeks. The travel time, which could be as long as one day,
must be incorporated into the schedule. Hence, it is very difficult
to discretize the scheduling horizon in RISP. Second, TMSP is used
for long-term planning and is solved infrequently (e.g., once a
year), and a solution time of a few hours is often acceptable. How-
ever, RISP is usually solved much more frequently (e.g., weekly),
and the user sometimes expects to see a solution within a few min-
utes for implementation in real time. A much faster algorithm is
therefore needed.

Because of its routing aspect, RISP is very similar to a VRP prob-
lem (Dantzig and Ramser, 1959), where every task is located at a
single vertex of the network. RISP also resembles an arc routing

problem (ARP) (Orloff, 1974), where every task is represented by
an arc instead of a vertex in the network. Some studies have inves-
tigated the periodic vehicle routing problems (PVRP) (Beltrami and
Bodin, 1974; Christofides and Beasley, 1984; Chao et al., 1995; Cor-
deau et al., 1997; Francis et al., 2008). In the standard PVRP, every
customer must be periodically visited, (which is similar to the fre-
quency requirements in RISP) according to a predetermined service
frequency and a set of candidate schedules. Heuristic algorithms
have been widely applied to PVRP. For example, Christofides and
Beasley (1984) proposed a two-stage heuristic, where the first
stage constructed an initial solution, and the second stage used
an interchange procedure to improve the solution. Francis et al.
(2006) introduced the concept of service choice, where the service
frequency of a customer is no longer fixed, and candidate sched-
ules with higher frequencies are allowed. The model was solved
using Lagrangian relaxation combined with a branch and bound
procedure. Other studies on PVRP include Alonso et al. (2008)
and Coene et al. (2010), where algorithms such as tabu search
and Lagrangian relaxation were proposed. A comprehensive review
of PVRP can be found in Campbell and Wilson (2014).

One limitation of the standard PVRP is that a set of candidate
schedules must be predetermined. If the time for a customer to
be visited is flexible, an exponential number of candidate sched-
ules will be required. Gaudioso and Paletta (1992) and Maya
et al. (2012) studied another type of PVRP where a customer re-
quires a certain number of visits in a given period (e.g., once or
twice a week). These models do not need a set of candidate sched-
ules as the input, but the scheduling horizon was still discretized
into intervals (e.g., days). A set of binary variables were used to
represent whether or not a customer is served on a certain day.
For RISP, however, the horizon cannot be discretized. First, an
inspection activity may last from less than one hour to a few
weeks. An activity is often interrupted at the end of a day (e.g.,
based on crew working hours) and be resumed at the beginning
of the next day. Second, there is no depot in RISP. Every day an
inspection team starts working from its previous day’s end loca-
tion. Therefore, the multi-day activities should be planned as one
whole route over the continuous scheduling horizon, and it is not
clear how the standard PVRP models can be directly applied.

3. Problem formulation

In this section, we will formulate the optimization problem in
order to give a precise description of RISP. We will first present a
VRP model for RISP, and then introduce different types of side con-
straints and costs.

3.1. Vehicle routing problem model

Let S be the set of track segments to be inspected periodically.
Because a segment may be inspected multiple times in the sched-
uling horizon, we define a task as a single inspection activity on a
segment. So each segment s 2 S has a set of tasks Is ¼ fis1; . . . ; isjIs jg
to be scheduled at or after the beginning of the scheduling horizon,
and also a most recently started task is0 which has started prior to
the beginning of the scheduling horizon. For a = 1, . . . ,jIsj, we al-
ways let task is(a�1) be performed before isa. Let I = [ s2S Is be the
set of all tasks to be scheduled.

When performing a task i 2 I, the inspection team starts from
one location of the segment, moves along the track, and completes
the task at another location. There may be multiple ways to per-
form a task, each with different start location and end location.
For example, to inspect a single-track segment between locations
A and B, a team may move from A to B or from B to A. To inspect
a double-track segment between A and B, a team may make a
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