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a b s t r a c t

Using analytical procedures to compute the propagation of delays on major railway networks yields size-
able computing time advantages over Monte Carlo simulations. The key objectives of this paper are to
present a formalisation of delay propagation by means of an activity graph, to outline the required math-
ematical operations to traverse the graph and to elaborate a suitable class of distribution functions to
describe the delays as random variables. These cumulative distribution functions allow to be speedily
computed but also allows the quality of the computing process to be controlled. Last but not least, issues
of procedural theory that arise in the context of networks are elaborated and the translation of the
approach to a software tool is presented.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In order to assess the robustness of railway timetables, it is nec-
essary to forecast the propagation of potential delays in the railway
network. Various types of delay (primary delay, secondary delay,
current delay) belong to the random variables and can be modelled
by means of cumulative distribution functions (cdfs). It is possible
with the aid of analytical procedures to reliably compute delay
propagation within a very short time, including for major (country-
wide) networks. Unlike Monte Carlo simulation, in which concrete
implementations of the delay situation are generated for each sim-
ulation run, analytical procedures directly process the cdfs of the
underlying random variables. Events that in reality lead to changes
in the delay (increase in delay due to a sequence-of-trains conflict,
decrease in delay due to recovery margins in place etc.) are
mapped in the model by manipulating the distribution functions.
Use is specifically made of both conditional and unconditional con-
volution and of ‘‘excess beyond’’ operations.

To ensure the precision and efficiency of the procedure, it is
necessary to select a class of distribution functions that guarantees
adequately accurate adaptation to the real world whilst not giving
rise to running-time and storage-space problems when use is made
of the manipulation functions. Since operations on random vari-
ables are subject to rather strict mathematical constraints which
cannot always be met while computing delay propagation, it is

moreover mandatory to analyse, to which extent an injury of these
constraints impacts the validity of the results.

This paper is an update of Büker and Wendler (2009) which is
extended by a summary of the research results achieved later
and being published in Büker (2010). Beside the theoretic back-
ground, also the considerations on the approach’s transfer to prac-
tical application, as described in Franke et al. (2012), are given
below.

The delay distributions adopted hitherto for robustness analy-
ses do not fully meet these boundary conditions. The state of the
science is set out in Section 2 below. After introducing the transfor-
mation of all required input data to an activity graph in Section 3
and having described the requirements for cdfs in Section 4, a
distribution function is presented in Section 5 that permits very
good adaptation to real conditions. The case is set out there for a
piecewise continuous distribution function, with each continuous
segment being represented by an act of distribution involving sev-
eral parallel phases. To guarantee the efficiency of the computa-
tional algorithm, a complexity-reduction algorithm is as well
outlined. After outlining mathematical constraints that have to
be considered if stochastic operations are applied in a network
context in Section 6, Section 7 sketches the implementation of
the overall concept into the productive software tool and outlines
aspects of its practical application. Last but not least the paper is
closed by an outlook on further need for research.

2. State of the science

Before the operations to be conducted are set out in detail in the
next two sections, existing methods of mapping random variables
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in the context of delay propagation are described and their
suitability is appraised. As well, a brief summary of existing ap-
proaches to assess delay propagation is provided. A broader over-
view of existing approaches to assess timetable robustness and
to estimate the time-of-arrival is given in Büker (2010).

2.1. Modified exponential distributions

Schwanhäusser arrived at the following distribution function by
evaluating delays at entry onto sections of line Schwanhäußer
(1974). Parameter a denotes the share of delayed trains, whilst k
is the inverse value of mean delay �t for the trains delayed:

FV ðtÞ ¼
0 if t < 0;
1� ae�kt if t P 0:

�
ð1Þ

Fig. 1 illustrates the resultant distribution function. The distribution
pattern reveals a jump discontinuity at t = 0. Proof of this distribu-
tion function being a suitable means of describing delays in train
running has been forthcoming from several sources. Besides empir-
ical approaches involving checking the fit on random samples (e.g.
in Hermann (1996), Wendler and Naehrig (2004) and Yuan (2006)),
analytical evidence has also been furnished by Engelhardt-Funke
and Kolonko (2001).

WEIDNER extended the cdf by a third parameter to enable differ-
entiation between systematic delays tsys and delays of random nat-
ure (Weidner and Büker, 2007). The corresponding function is as
follows:

FV ðtÞ ¼
0 if t < tsys;

1� ae�kðt�tsysÞ if t P tsys:

�
ð2Þ

While the low number of parameters permits a very efficient data
handling on the one hand, each operation on this class results in a
cdf that cannot be represented by the same class on the other hand.
In the further course, such a property is denoted as missing closed-
ness under the required operations. Approaches to bypass the miss-
ing closedness by approximations are introduced by Mühlhans
(1990) and Weidner and Büker (2007). They are mainly based on
enforcing an exact expectation value after each operation, but a
proof on the quality of the approximation is not given.

2.2. Phase-type distributions

A phase-type distribution results from a system of one or more
inter-related Poisson processes occurring in phases. The sequence
in which each of the phases occur may itself be a stochastic pro-
cess. The distribution can be represented by a random variable
describing the time until absorption of a Markov process with
one absorbing state. Each of the states of the Markov process

represents one of the phases. This class of cdf is closed under cer-
tain operations, in particular the unconditional convolution of cdf
(the summation of random variables) and the summation of cdf.
This property permits usage of phase-type distributions in models,
where compositions and mixtures of phase-type distributed ran-
dom variables occur (Neuts, 1981). Mainly depending on the num-
ber of used phases, the class of phase-type distributions allows a
very close fitting as well to cdfs as to the samples of data. From
the viewpoint of railway operation one has to keep in mind any-
way, that phase-type distributions are solely defined for t P 0.

In Meester and Muns (2007) suggest using this distribution
class to model delay propagation on networks and cite two proper-
ties to underpin their proposal: firstly, phase-type distributions
permit a very good fit with given distribution functions and, sec-
ondly, this class facilitates closed execution of the requisite math-
ematical operations. Maximum formation and ‘‘excess beyond’’
operations are cited as needing to be factored in along with uncon-
ditional convolution. The operations shown in Section 4.3 refute
the latter point, however: in the absence of free segment bound-
aries it is not possible on the basis of phase-type distributions to
conclusively map secondary delays. As a consequence it is not pos-
sible to factor in elementary changes of sequence between trains.

2.3. Theta-exponential polynomials

KOLONKO proposes adopting extended exponential polynomials
in delay modelling (Kolonko, 2007). This kind of distribution func-
tion is described by means of an extremely flexible distribution
function with singularities at points #i:

FV ðtÞ ¼
Xn

i¼1

ai � ðt � #iÞdi � eki �ðt�#iÞ1½#i ;1ÞðtÞ ð3Þ

The distribution function embraces an arbritary number n of theta-
exponential polynoms a � td � ek�t, each one i defined on #i 6 t. Unlike
the distribution functions alluded to thus far, this function rule
facilitates conclusive mapping of delay propagation on networks,
as all requisite operations can be conducted in a closed manner. It
needs to be borne in mind, however, that the number of parameters
describing the random variables increases greatly with each opera-
tion, leading to numerical problems in data maintenance due to an
incidence of very small values. Its use in electronic data processing
is accordingly predicated upon the development of complexity-
reduction algorithms.

2.4. Discretisation of random variables

YUAN delineates a method for computing delay propagation at a
major station (Yuan, 2006; Yuan and Hansen, 2007). His approach
discards analytical computation in favour of discretisation of ran-
dom variables alongside the use of numerical convolution. In the
form of representation selected, the quality of adaptation to exist-
ing distribution functions is determined solely by means of the set
of points required to this end and can be arbitrarily well achieved.
The numeric representation is furthermore closed under all neces-
sary operations.

In contrast to a symbolic representation as presented by (1)–(3),
the computation effort per operation is almost constant in the nu-
meric representation. Vice versa, practical tests underpin, that the
required computation time is considerably higher than in case of a
symbolic representation of the cdf.

2.5. Overview of systems to assess timetable robustness

The qualified assessment of the operating quality of timetables
is currently performed – if at all – with the aid of microscopicFig. 1. Delay distribution after SCHWANHäUßER.
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