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a b s t r a c t

Rock mass damage at great depths near underground openings is often of a zonal character. However, the
classical elastoplastic theory fails to explain sufficiently all properties of zonal failure structures. A new
non-Euclidean mathematical model for highly-stressed rock mass was developed based on the principles
of mechanics of defected material and non-equilibrium thermodynamics. Methods were developed to
determinemodel parameters that provide satisfactory correspondence between the experimentalfindings
concerning faulted zonal structures near openings at great depths and mathematical calculations. The
mechanism of this phenomenonwas discoveredwhich consisted in a periodical character of stresses in the
surrounding rock mass and development of tensile macrocracks at zones of maximal tangential stresses.
Main relationships between the cracking zone width and rock mass strength were established.
� 2016 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by

Elsevier B.V. All rights reserved.

1. Introduction

Failure conditions can be observed in boundary areas of open-
ings in highly-stressed rock mass during mining and drilling op-
erations. In some cases the failure is of zonal character with zones
of tensile macrocracks alternating with relatively monolithic rock
mass (Adams and Jager, 1980; Shemyakin et al., 1986).

Many attempts were made to describe the zonal character of
rock mass failure near openings based on classical mechanics
(Shemyakin et al., 1987; Odintsev, 1994, 1996; Reva and Tropp,
1995; Metlov et al., 2002; Li et al., 2006a,b; Pan et al., 2007; Wu
et al., 2009a,b; Jia and Zhu, 2015). However, none of the theories
could explain all properties of the zonal failure structures without
introducing new assumptions in every new case.

There were efforts to describe the main relationships between
zonal disintegrationwithin the dislocation model and the theory of
the strain energy density factor (Zhou et al., 2008) based on the
principle of stress superposition and Chebyshev polynomials
expansion of the pseudo-traction with numerical calculations
(Zhou et al., 2009), numerical model of growth and coalescence of
cracks within rock mass with the weak element adaptation (Qian

et al., 2009), gradient theories of elastoplastic solids (Qi et al.,
2011; Wang et al., 2012), and numerical models of defected rocks
around an excavation under the action of a slowly unloaded P-wave
(Zhu et al., 2014). However, they all failed to quantify zonal failure
structures.

A new gage theory was recently applied to solids to describe the
whirl fields of plasticity under high-energy conditions (Kadic and
Edelen, 1983; Panin, 1990; Panin et al., 1990). The main principle
of the gage theory is the incompatibility of deformations in
damaged solids.Wewere thefirst to apply this principle to the zonal
failure phenomenon in rock mass near openings (Guzev and
Paroshin, 2001). The approach involving the non-Euclidean model
was used in some work later to study the problem of zonal disin-
tegration (Qian and Zhou, 2011; Zhou et al., 2011, 2012, 2013), but no
methods for calculating model parameters were proposed and no
correlations between theoretical and experimental findings were
demonstrated. In this paper, we demonstrate an example to
describe the phenomenon using the non-Euclidean mathematical
model. The description is based on the concept of rock mass hier-
archical block system (Sadovsky, 1979; Makarov, 2004; Xu, 2009)
with the rock sample taken as thefirst level and the rockmass on the
scale of the opening as the second level of the hierarchical system.

2. Mathematical model

Rock at great depths is modeled by a faulted structure, which is
far from the state of thermodynamical equilibrium due to the
damage accumulation. In addition, it is subjected to prolonged
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compressive stresses at infinity. The boundary-value problem is
formulated by determining the stress state of a weightless solid
plane with damage. The stresses prescribed at infinity model a
gravity field. The plate contains a round hole that models an un-
supported underground opening (Fig. 1). Due to the polar sym-
metry of the problem, the equilibrium equations are written as
follows:

vsrr
vr

þ 1
r

�
srr � s44

� ¼ 0; sr4 ¼ 0 ðr0 � r < NÞ (1)

where r is the distance from the center of the opening to the
selected point in the rock mass, srr is the normal radial stress, s44 is
the normal tangential stress, and sr4 is the shear stress.

At the boundary of the opening (r ¼ r0) and at infinity, the
following stresses are applied:

srr ¼ 0 ðr ¼ r0Þ; srr; s44/sN ðr/NÞ (2)

where sN ¼ grH, gr is the unit weight of rock (kN/m3), and H is the
opening depth (m).

The rock mass at great depth is modeled by the material where
the conditions of deformation compatibility 3ij are not met
commonly:
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The damage parameter R is expressed by the following equation
(Guzev and Paroshin, 2001):

D2R� g2R ¼ 0 (4)

where D is the Laplace operator and g is the model parameter.
As the problem is plane- and axi-symmetrical, Eq. (4) in the

polar coordinates can be rewritten as
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The solution to Eq. (5) decreasing at r / N is
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where J0, N0, and K0 are the Bessel, Neumann, and MacDonald
functions of zero order, respectively.

3. Non-classical boundary conditions and problem solution

At the opening boundary, the rock mass undergoes considerable
damage; therefore, the damage parameter R should be not equal to
zero. Assuming that all failure zones of rock are equivalent and are
of the same origin, we introduce the extremum of the function at
the boundary R(r) and the following failure zones. Therefore, the
boundary conditions for the function R(r) are

R0ðrÞ��r¼r0
¼ 0; R0ðrÞ��r¼r* ¼ 0 (7)

where r* is the distance from the opening contour to the middle
point of the first failure zone, which has been obtained from
experimental data.

The equation for the first invariant of stresses s ¼ szz þ srr þ s44
is written as follows with the determined function R:

Ds ¼ E
2ð1� nÞR; s/2ð1þ nÞsN; r/N (8)

where E is the modulus of elasticity and n is the Poisson’s ratio.
The solution to Eq. (8) gives the equations of stress components:

srr ¼ sN
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Fig. 1. Design diagram of an unlined opening.
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