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a b s t r a c t

In this study, the least square support vector machine (LSSVM) algorithm was applied to predicting the
bearing capacity of bored piles embedded in sand and mixed soils. Pile geometry and cone penetration
test (CPT) results were used as input variables for prediction of pile bearing capacity. The data used were
collected from the existing literature and consisted of 50 case records. The application of LSSVM was
carried out by dividing the data into three sets: a training set for learning the problem and obtaining a
relationship between input variables and pile bearing capacity, and testing and validation sets for
evaluation of the predictive and generalization ability of the obtained relationship. The predictions of pile
bearing capacity by LSSVM were evaluated by comparing with experimental data and with those by
traditional CPT-based methods and the gene expression programming (GEP) model. It was found that the
LSSVM performs well with coefficient of determination, mean, and standard deviation equivalent to 0.99,
1.03, and 0.08, respectively, for the testing set, and 1, 1.04, and 0.11, respectively, for the validation set. The
low values of the calculated mean squared error and mean absolute error indicated that the LSSVM was
accurate in predicting the pile bearing capacity. The results of comparison also showed that the proposed
algorithm predicted the pile bearing capacity more accurately than the traditional methods including the
GEP model.
� 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by

Elsevier B.V. All rights reserved.

1. Introduction

Bearing capacity is one of the most important factors that
govern the design of pile foundations. Therefore, it has been the
subject of interest for many researchers throughout the history of
the geotechnical engineering profession. As a result, numerous
theoretical and experimental procedures have been proposed to
predict the pile behavior and bearing capacity. However, accurate
evaluation of pile bearing capacity and certain interpretation of pile
load transfer mechanism are still far from being accomplished due
to the complexity of the problem.

The theoretical solutions, which employ the theory of bearing
capacity to calculate the pile shaft and tip resistance, involve
shortcomings resulting from considerable uncertainty over the
factors that influence the bearing capacity. Among those factors are

the effect of installation method, stress history and soil compress-
ibility. For bored piles embedded in layered soil, the problem is
more complex due to sensitivity of the factors that affect the
behavior of the pile and the difficulty in quantifying those factors.
For instance, the friction angle between pile and the surrounding
soil cannot be exactly determined because of the effect of instal-
lation procedure and the difficulty in finding the real soil
properties.

The experimental solutions that correlate the results of in-situ
tests such as standard penetration test (SPT) or cone penetration
test (CPT) with pile bearing capacity also involve setbacks. Thatmay
be attributed to that the SPT has substantially inherent variability
and does not reflect soil compressibility (Abu-Kiefa, 1998). More-
over, the SPT results are affected by many factors, such as operator,
drilling, hammer efficiency, and rate of blows. Hence, the accuracy
of the proposed correlations between SPT data and pile bearing
capacity is not assured. Although the correlation between pile ca-
pacity and CPT data can be a better alternative to the SPT correla-
tion, comparative studies of the available CPT-based methods
carried out by a number of researchers (e.g. Briaud,1988; Roberston
et al., 1988; Eslami, 1997; Abu-Farsakh and Titi, 2004; Cai et al.,
2008) have shown that the capacity predictions can be very
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different for the same case depending on the method employed. It
is also found that these methods cannot provide consistent and
accurate prediction of pile bearing capacity.

Considering the limitations of the proposed procedures for
predicting pile bearing capacity and the limited success that they
have achieved in terms of providing accurate prediction of pile
bearing capacity, further research is required to overcome the
complications associated with the problem. Artificial intelligence
techniquesmay be better alternatives, due to the capability of being
able to deal with complex and highly nonlinear functions, and
employing the considerable capacity of computers to perform
enormously iterated work. The modeling advantage of these tech-
niques is their ability to capture the nonlinear and complex re-
lationships between the targeted output and the factors affecting it,
without having to assume a priori formula describing this rela-
tionship. A number of researchers (e.g. Teh et al., 1997; Abu-Kiefa,
1998; Das and Basudhar, 2006; Ardalan et al., 2009; Shahin, 2010;
Ornek et al., 2012; Tarawneh, 2013) have successfully applied
artificial neural network (ANN), which is a form of artificial intel-
ligence, to solving engineering problems. Genetic programming
(GP), which is another form of artificial intelligence, has been used
successfully in solving engineering problems (Rezania and Javadi,
2007; Alavi et al., 2011; Alkroosh and Nikraz, 2011a, b; Gandomi,
2011; Gandomi and Alavi, 2012). Recently, an emerging algo-
rithm, i.e. the least square support vector machine (LSSVM), which
is a developed version of support vector machine (SVM), has been
found successful in solving engineering problems (Das et al., 2011a,
b; Samui and Kothari, 2011). This study investigates the feasibility
of using the LSSVM to predict the bearing capacity of bored piles
embedded in sand and mixed soils more accurately than the
available methods.

2. Support vector machine (SVM)

The SVM is a method developed using the statistical learning
concept (Suykens and Vandewalle, 1999). It has been widely used
across the world (Cortes and Vapnik, 1995; Bazzani et al., 2001;
Suykens et al., 2002; Amendolia et al., 2003; Baylar et al., 2009;
Übeyli, 2010; Chen et al., 2011; Chamkalani et al., 2013; Rafiee-
Taghanaki et al., 2013; Shokrollahi et al., 2013).

If we have training samples with given data xi˛Rnand result
data yi˛Rwith labels �1 and 1, respectively, the SVM estimates the
function shown below (Suykens and Vandewalle, 1999; Suykens
et al., 2002):

y ¼ wTFðxÞ þ b (1)

where FðxÞ is the function that maps x, andw and b are the weight
vector and bias variable. When the data are separable, we will have
(Suykens and Vandewalle, 1999; Suykens et al., 2002):

wTFðxkÞ þ b � 1 ðyk ¼ 1Þ
wTFðxkÞ þ b � 1 ðyk ¼ �1Þ

�
(2)

Eq. (2) is nearly equal to (Das et al., 2011a, b; Chamkalani et al.,
2013):

yk
h
wTFðxkÞ þ b

i
� 1 ðk ¼ 1; 2; .; NÞ (3)

The further development of linear SVM to non-independent
case was also created by Cortes and Vapnik (1995). Simply, it is
done by presenting extra variables into Eq. (3) (Suykens and
Vandewalle, 1999; Suykens et al., 2002):

yk
h
wTFðxkÞ þ b

i
� 1� zk; zk � 0 ðk ¼ 1; 2; .; NÞ (4)

where zk is the deviation factor.
The optimal separating hyperplane is predicted using the vector

w that minimizes the functional conditions using the constraints
(Eq. (4)) (Suykens and Vandewalle, 1999; Suykens et al., 2002;
Übeyli, 2010):

Fðw; ziÞ ¼ 1
2
wTw þ C

2

XN
i¼1

zpi (5)

where p is the upper limit, and C is a coefficient.
In the SVM, optimal separating hyperplane is calculated using

the quadratic method (Cortes and Vapnik, 1995):

Fðw; b; ai; zi; biÞ ¼
1
2
wTwþC
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�
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h
yi
�
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�1þzi

i
�
XN
j¼1

bizia

(6)

where a is the adjustable parameter, ai and bi are the Lagrange
multipliers (Suykens and Vandewalle, 1999; Suykens et al., 2002).

In contrast to the SVM, the LSSVM is developed using minimi-
zation of cost equation (Suykens and Vandewalle, 1999; Suykens
et al., 2002):

Fðw; ziÞ ¼ 1
2
wTw þ C

2

XN
i¼1

z2i (7)

yi
h
wTFðxiÞ þ b

i
¼ 1� zi ði ¼ 1; 2; .; NÞ (8)

To derive the dual problem for the nonlinear classification
problem of LSSVM, the Lagrange function is defined as (Suykens
and Vandewalle, 1999; Suykens et al., 2002):

Lðw; b; z; aÞ ¼ 1
2
wTw þ C

2

XN
i¼1

z2i

�
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ai

n
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ð9Þ

The conditions for optimality can be obtained as

vL
vw

¼ 00w ¼
XN
i¼1

aiyiFðxiÞ

vL
vb

¼ 00
XN
i¼1

aiyi ¼ 0

vL
vzi

¼ 00ai ¼ gzi ði ¼ 1; 2; .; NÞ

vL
vak

¼ 00yi
h
wTFðxiÞ þ b

i
¼ 1� zi ði ¼ 1; 2; .; NÞ

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;
(10)

By defining ZT ¼ ½FTðx1Þy1; FTðx2Þy2; .; FTðxNÞyN�, Y ¼
½y1; y2; .; yN�, 1

! ¼ ½1; 1; .; 1�, z ¼ ½z1; z2; .; zN �, a ¼
½a1; a2; .; aN�, Eq. (10) is finally converted into the below form
(Minoux, 1986; Suykens and Vandewalle, 1999):
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