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Simulation of flow and transport through rough walled rock fractures is investigated using the lattice
Boltzmann method (LBM) and random walk (RW), respectively. The numerical implementation is
developed and validated on general purpose graphic processing units (GPGPUs). Both the LBM and RW
method are well suited to parallel implementation on GPGPUs because they require only next-neighbour
communication and thus can reduce expenses. The LBM model is an order of magnitude faster on

GPGPUs than published results for LBM simulations run on modern CPUs. The fluid model is verified for
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parallel plate flow, backward facing step and single fracture flow; and the RW model is verified for point-
source diffusion, Taylor-Aris dispersion and breakthrough behaviour in a single fracture. Both algorithms
place limitations on the discrete displacement of fluid or particle transport per time step to minimise the
numerical error that must be considered during implementation.

© 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by

Elsevier B.V. All rights reserved.

1. Introduction

As computer modelling has evolved, so too have two diametri-
cally opposed requirements of those models in modelling.
Certainly, it is desirable to improve a model’s computational speed
and, yet, it is also desirable to improve the model’s accuracy and
capability, and attributes that usually require an increase in
computational time. Improvements can take the form of enhanced
or additional physics or an increase in model resolution to improve
accuracy. Often it is a combination of both factors, for example, a
new physics model may require higher resolution, or finer meshes
to simulate new phenomena. Therefore, one must balance model
accuracy and computational time.

To address these computational limitations over the past few
decades, more computational power was used, often simply taking
advantage of new processor technology. However, single pro-
cessors, or CPUs, are reaching a performance limit due to
manufacturing constraints. Therefore, to continue improving per-
formance, the CPU industry has moved toward using multiple CPUs
in parallel. The challenge with this approach then becomes the
implementation of conventional numerical algorithms and
methods on parallel architectures, including clusters of CPUs and
graphics processing units (GPUs). GPUs have evolved over time
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with more complex computing capabilities, similar to a conven-
tional CPU, and are referred to as general purpose GPUs (GPGPUs).

The lattice Boltzmann method (LBM) is increasingly used for the
simulation of fluid flows in complex geometries (Stockman et al.,
1998; Eker and Akin, 2006; Yan and Koplik, 2008; Dou et al.,
2013). However, its engineering applications have been limited by
the required computing power. The local nature of LBM, where only
next-neighbour node communication is required, is suitable for
parallelization. Previous work has shown that an increase of an
order of magnitude in performance can be expected when imple-
menting LBM on a GPGPU (Bailey et al., 2009; Télke, 2010). How-
ever, such work did not show the applicability and validation for
flows in rock fractures that are of interest to hydrogeology.

Other computational fluid dynamic (CFD) methods begin with
the continuum Navier—Stokes equations governing the macro-
scopic movement of fluids, and then discretize these equations
with a suitable numerical method (Eker and Akin, 2006). In the
LBM model, the microscopic interaction of particles on a grid and
the averaging of those interactions emerge into the macroscopic
continuum of a fluid. These interactions include two main steps:
streaming and collision. The streaming step is a translation of
particles from one node on the grid to the next. The collision step
conserves momentum by redirecting particles that ‘collide’ or
occupy the same node.

This study demonstrates a verified GPGPU code for simulating
two-dimensional (2D) laminar flow through rock fractures using a
D2Q9 LBM.

Effective understanding of solute transport in fractures is
underpinned by the need for accuracy in the simulation of fluid
flow. To account for the effects of tortuosity (Tsang, 1984) and
Reynolds number above unity, a CFD approach is used. A CFD
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approach, like the LBM, provides local velocities throughout the
model domain which are used to move particles through the pro-
cess of advection. A diffusive process is also included using a
random walk (RW) algorithm which is shown to accurately capture
the complex geometries associated with single fractures.

In this study, high performance GPGPU numerical methods are
developed, validated and shown to be capable of modelling flow
and transport in synthetic and real fractures. It is increasingly
important for projects of all scales to conduct modelling studies
which may require meshes with millions of nodes or large para-
metric searching, for example, variations in Reynolds number,
boundary conditions and fracture geometries. The large meshes, or
grids, become computationally and financially expensive on con-
ventional CPUs or clusters. However, a single GPGPU can bridge the
gap to high performance computing if the required algorithms are
well implemented on the GPGPU with sufficient performance
advantages.

2. Model implementation
2.1. Lattice Boltzmann method (LBM)

The LBMs have been used in a variety of engineering applica-
tions, including the field of porous and fractured media flow (Sukop
etal,, 2013). Additional development of LBM theory can be found in
the literature (Succi, 2001; Sukop and Thorne, 2006; Latt, 2007). For
the purpose of modelling flow in fractures, a 2D LBM code was
developed using nine velocity directions e;, also known as D2Q9.
The LBM can be summarised in the following form:
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where the left hand side of the equation represents the streaming
step and the right hand side represents the collision step, and 1 is
the relaxation parameter that governs the rate at which the fluid
tends towards equilibrium. For the LBM model presented, 7 takes
the following form:

T = 3u +1/2 @)

where vg is the numerical viscosity defined by the discretization of
the system into lattice units.

The model runs on a GPGPU using CUDA, a proprietary pro-
gramming model developed by NVIDIA. One of the drawbacks of
GPGPU implementations is the discrepancy between 32-bit and 64-
bit floating point precision as current hardwares have limited
support for 64-bit, or double precision calculations. Typical GPGPU
implementations offer double precision performance that is
approximately one third or one quarter that of single precision
performance, depending on the model and manufacturer. Without
double precision calculations, the numerical error, or the code
complexity required to compensate for error, increases.

Another type of numerical error in CFD models, conventionally
referred to as numerical dissipation, describes the artificial dissi-
pation of momentum in fluid. Since the LBM is essentially a finite
difference approximation to the Boltzmann equation, it is subjected
to the same numerical truncations as other finite difference
methods. The numerical error can cause dissipation of the advec-
tion term which by definition should be free of dissipation (Zhu
et al., 2006).

To minimise the potential for numerical instabilities in the LBM
and maintain the second order accuracy of the LBM, the model pa-
rameters are defined using the method presented by Latt and Krause
(2008) as part of the OpenLB User Guide. The process involves

selecting physical units then converting to lattice units to finally
obtain the relaxation parameter 7. The relaxation parameter plays an
important role in the collision term of the LBM. It controls the ten-
dency of the system to move towards local equilibrium. In the liter-
ature, the relaxation parameter has been found to cause numerical
instabilities when it approaches 0.5 (t must be greater than 0.5 for
physical viscosities). Stable values of 7 close to unity are preferred for
numerical accuracy of the LBM and can be found using the method
outlined below (Sukop and Thorne, 2006; Sukop et al., 2013).

In this study, water is the physical fluid being simulated with a
kinematic viscosity, v, in a fracture of aperture, 2a, and with phys-
ical velocity, u. This leads to an expression for the Reynolds
number:

Re = 2au (3)
v

The dimensionless expression for Reynolds number is then used
to convert from the physical units of the system to lattice units. The
fracture width is discretized into lattice nodes of length 6y with
discrete time d;. In order to minimise the slightly compressible
nature of the LBM and maintain the second order accuracy, the
following constraints are used respectively when determining
system discretization:

5 < % 4)
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Practically, to ensure stability and numerical accuracy, these
constraints are addressed by limiting the numerical velocity to a
maximum of 0.1 lattice units per time step, which minimises the
partial compressibility of the LBM (Sukop and Thorne, 2006). The
lattice viscosity (v ) is calculated based on the discretization of the
system and the dimensionless Reynolds number. Finally, the
relaxation parameter is calculated according to Eq. (2) and is kept as
close to unity as possible by adjusting the mesh size and maximum
lattice velocity.

2.2. Boundary conditions

One of the distinct advantages of the LBM comes from its
discrete nature. It is efficient for modelling complex geometries
(Chen et al., 1994; Eker and Akin, 2006; Lammers et al., 2006;
Brewster, 2007) that arise in the analysis of rock fractures. Within
the modelling domain, each node may represent a rock mass or
fluid node. At the solid boundaries, a no-slip condition is used to
create a zero velocity boundary along the surface. A different set of
collision equations are used at the solid boundary and are referred
to as mid-plane bounce-back boundary conditions (Succi, 2001).
The name arises from the applied boundary rules where particles
entering a boundary at time t are sent back out with equal velocity
magnitude and opposite direction at time t + At. This effectively
puts the boundary at a distance midway between a fluid and solid
node.

Constant flux, pressure and gravity-driven boundary conditions
can be used to drive the fluid through the fracture. Solid and no-slip
boundaries are used along the fracture surfaces while periodic
boundary conditions are used at entry and exit of the fracture where
fluid and solutes leaving the fracture are re-injected with equivalent
velocity and direction. Periodic boundary conditions simulate an
infinite domain with periodically repeated geometry. A periodic, or
wrapped boundary, in combination with applied gravity boundary
conditions, removes entry or exit effects which would otherwise
arise under conventional constant flux boundaries.
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