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The goal of this review paper is to provide a summary of selected discrete element and hybrid finite—
discrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools
for fracturing processes in rocks and rock masses. The fundamental principles of each computer code are
illustrated with particular emphasis on the approach specifically adopted to simulate fracture nucleation
and propagation and to account for the presence of rock mass discontinuities. This description is accom-

panied by a brief review of application studies focusing on laboratory-scale models of rock failure processes
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1. Introduction

A large body of experimental research shows that the failure
process in brittle rocks under compression is characterized by
complicated micromechanical processes, including the nucleation,
growth and coalescence of microcracks, which lead to strain
localization in the form of macroscopic fracturing (Lockner et al.,
1991; Benson et al., 2008). The evolution of micro-cracking, typi-
cally associated with the emission of acoustic energy (AE), results in
a distinctive non-linear stress—strain response, with macroscopic
strain softening commonly observed under low-confinement con-
ditions (Brace et al., 1966; Bieniawski, 1967; Eberhardt et al., 1997;
Martin, 1997). Furthermore, unlike other materials (e.g. metals),
rocks exhibit a strongly pressure-dependent mechanical behavior
(Jaeger and Cook, 1976). A variation of failure mode, from axial
splitting to shear band formation, is indeed often observed for
increasing confining pressures (Horii and Nemat-Nasser, 1986).
This variation of failure behavior is reflected in a non-linear failure
envelope (Kaiser and Kim, 2008) and a transition from brittle to
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ductile post-peak response (Paterson and Wong, 2004). At rock
mass level, the failure process observed during laboratory-scale
experiments is further complicated by the presence of disconti-
nuities, such as joints, faults, shear zones, schistosity planes, and
bedding planes (Goodman, 1989). Specifically, discontinuities affect
the response of the intact rock by reducing its strength and
inducing non-linearities and anisotropy in the stress—strain
response (Hoek, 1983; Hoek et al., 2002). Furthermore, disconti-
nuities add kinematic constraints on the deformation and failure
modes of structures in rocks (Hoek et al., 1995; Hoek, 2006) and
cause stress and displacement redistributions to sensibly deviate
from linear elastic, homogenous conditions (Hammabh et al., 2007).

Aside from the intrinsic uncertainties associated with the
determination of reliable in situ input parameters, the application
of numerical modeling to the analysis of rock engineering problems
represents a challenging task owing to the aforementioned features
of the rock behavior. In particular, the progressive degradation of
material integrity during the deformation process, together with
the influence of pre-existing discontinuities on the rock mass
response, has represented a major drive for the development of
new modeling techniques. In this context, the available numerical
approaches are typically classified either as continuum- or
discontinuum-based methods (Jing and Hudson, 2002).

The main assumption of continuum-based methods is that the
computational domain is treated as a single continuous body.
Standard continuum mechanics formulations are based on theories
such as plasticity and damage mechanics, which adopt internal
variables to capture the influence of history on the evolution of
stress and changes at the micro-structural level, respectively (De
Borst et al., 2012). Conventionally, the implementation of contin-
uum techniques is based on numerical methods, such as non-linear
finite element method (FEM), Lagrangian finite difference method
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(FDM), and boundary element method (BEM), with the incorpora-
tion of plasticity-based material models. However, standard
strength-based strain-softening constitutive relationships cannot
capture localization of failure as the lack of an internal length scale
results in the underlying mathematical problem to become ill-
posed (De Borst et al., 1993). Among the main consequences of
adopting a standard continuum to simulate strain localization is the
fact that, by doing so, localization occurs in a region of zero thick-
ness and consequently an unphysical mesh sensitivity arises. To
overcome these shortcomings, the description of the continuum
must account either for the viscosity of the material, by incorpo-
rating a deformation-rate dependency, or for the change in the
material micro-structure, by enhancing the mathematical formu-
lation with additional terms (De Borst et al, 1993). The latter
technique, known as regularization, includes non-local (e.g. Bazant
and Pijaudier-Cabot, 1988), gradient (e.g. Miihlhaus and Aifantis,
1991), and Cosserat micro-polar (e.g. Miihlhaus and Vardoulakis,
1987) models. Alternatively, cohesive-crack models have been
proposed under the assumption that damage can be represented by
a dominant macro-fracture lumping all non-linearities into a
discrete line (e.g. Hillerborg et al., 1976; Bazant and Oh, 1983). That
is, a fictitious crack concept is employed to represent the effect of a
fracture process zone (FPZ) ahead of the crack tip, whereby phe-
nomena such as small-scale yielding, micro-cracking or void
growth and coalescence are assumed to take place. For the case of
heterogeneous rocks, strain localization has also been successfully
simulated by damage models with statistically distributed defects.
A number of variations of this approach have been developed for
numerical schemes such as FEM (Tang, 1997), FDM (Fang and
Harrison, 2002), smooth-particle hydrodynamics (SPH) (Ma et al.,
2011), cellular automaton (Feng et al., 2006), and lattice models
(Blair and Cook, 1998).

Within continuum models, two approaches are commonly
employed to account for the presence of rock mass discontinuities.
If the number of discontinuities is relatively large, homogenization
techniques are typically adopted. The most widely used homoge-
nization approach consists of reducing, within a conventional
elasto-plastic model, the rock mass deformation modulus and
strength parameters to account for the degrading effect induced by
the local geological conditions (Hoek et al., 2002; Hoek and
Diederichs, 2006). More advanced models can also include trans-
versely isotropic elastic response induced by preferably oriented
joints (Amadei, 1996) or failure-induced plastic anisotropic
behavior (e.g. Miihlhaus, 1993; Dyszlewicz, 2004). However, the
classic homogenization approach is typically limited by the fact
that slip, rotations and separation as well as size effects induced by
discontinuities cannot be explicitly captured (Hammah et al,
2008). Alternatively, if the problem is controlled by a relatively
low number of discrete features, special interface (or joint) ele-
ments can be incorporated into the continuum formulation (e.g.
Goodman et al., 1968; Ghaboussi et al., 1973; Wilson, 1977; Pande
and Sharma, 1979; Bfer, 1985). This technique, also known as the
combined continuum-interface method (Riahi et al., 2010), can
accommodate large displacements, strains and rotations of discrete
bodies. However, it is accurate as long as changes in edge-to-edge
contacts along the interface elements are negligible throughout
the solution (Hammah et al., 2007). That is, owing to the fixed
interconnectivity between solid and joints and the lack of an
automatic scheme to recognize new contacts, only small displace-
ment/rotations along joints can be correctly captured (Cundall and
Hart, 1992).

Discrete (or discontinuous) modeling techniques, commonly
referred to as the discrete element method (DEM), treat the ma-
terial directly as an assembly of separate blocks or particles. Ac-
cording to the original definition proposed by Cundall and Hart

(1992), a DEM is any modeling technique that (i) allows finite dis-
placements and rotations of discrete bodies, including complete
detachment; and (ii) recognizes new contacts automatically as the
simulation progresses. DEMs were originally developed to effi-
ciently treat solids characterized by pre-existing discontinuities
having spacing comparable to the scale of interest of the problem
under analysis and for which the continuum approach described
above may not provide the most appropriate computational
framework. These problems include: blocky rock masses, ice plates,
masonry structures, and flow of granular materials. DEMs can be
further classified according to several criteria regarding, for
instance, the type of contact between bodies, the representation of
deformability of solid bodies, the methodology for detection and
revision of contacts, and the solution procedure for the equations of
motion (Jing and Stephansson, 2007). Based on the adopted solu-
tion algorithm, DEM implementations are broadly divided into
explicit and implicit methods. The term distinct element method
refers to a particular class of DEMs that use an explicit time-domain
integration scheme to solve the equations of motion for rigid or
deformable discrete bodies with deformable contacts (Cundall and
Strack, 1979a). The most notable implementations of this group are
arguably represented by the universal distinct element code
(UDEC) (Itasca Consulting Group Inc., 2013) and the particle flow
code (PFC) (Itasca Consulting Group Inc., 2012b). On the other hand,
the best known implicit DEM is the discontinuous deformation
analysis (DDA) method (Shi and Goodman, 1988). Despite the fact
that DEMs were originally developed to model jointed structures
and granular materials, their application was subsequently
extended to the case of systems where the mechanical behavior is
controlled by discontinuities that emerge as natural outcome of the
deformation process, such as fracturing of brittle materials. Spe-
cifically, the introduction of bonding between discrete elements
allowed capturing the formation of new fractures and, thus,
extended the application of DEMs to simulate also the transition
from continuum to discontinuum.

As observed by Bicani¢ (2003), the original boundary between
continuum and discontinuum techniques has become less clear as
several continuum techniques are capable of dealing with emergent
discontinuities associated with the brittle fracture process. In
particular, the hybrid approach known as the combined finite—
discrete element method (FDEM) (Munjiza et al., 1995; Munjiza,
2004) effectively starts from a continuum representation of the
domain by finite elements and allows a progressive transition from a
continuum to a discontinuum with insertion of new discontinuities.

The goal of this review paper is to provide a summary of selected
discrete element and hybrid finite—discrete element modeling
techniques that have recently emerged in the field of rock me-
chanics as simulation tools for fracturing processes in rocks and
rock masses. Specifically, the commercially available codes PFC
(Itasca Consulting Group Inc., 2012b), UDEC (Itasca Consulting
Group Inc., 2013) and ELFEN (Rockfield Software Ltd., 2004) as
well as the open-source software Yade (Kozicki and Donzé, 2008)
and Y-Geo (Mahabadi et al., 2012a) are considered. Also, extensions
of the DDA method to simulate fracturing processes are described.
For each code, the fundamental implementation principles are
illustrated with particular emphasis on the approach specifically
adopted to simulate fracture nucleation and propagation and to
account for the presence of rock mass discontinuities. The
description of the governing principles is accompanied by a brief
review of application studies focusing on laboratory-scale models
of rock failure processes and on the simulation of damage devel-
opment around underground excavations. For more extensive re-
views of numerical methods in rock mechanics, the reader can refer
to the work of Jing and Hudson (2002) and Jing (2003), with a
detailed illustration of fundamentals and applications of DEMs
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