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Abstract: The strict definition and logical description of the concept of structure stability and failure are presented. The 
criterion of structure stability is developed based on plastic complementary energy and its variation. It is presented that the 
principle of minimum plastic complementary energy is the combination of structure equilibrium, coordination condition of 
deformation and constitutive relationship. Based on the above arguments, the deformation reinforcement theory is developed. 
The structure global stability can be described by the relationship between the global degree of safety of structure and the 
plastic complementary energy. Correspondingly, the new idea is used in the evaluations of global stability, anchorage force of 
dam-toe, fracture of dam-heel and treatment of faults of high arch dams in China. The results show that the deformation 
reinforcement theory provides a uniform and practical theoretical framework and a valuable solution for the analysis of 
global stability, dam-heel cracking, dam-toe anchorage and reinforcement of faults of high arch dams and their foundations. 
Key words: deformation reinforcement theory; structure stability; unbalanced force; plastic complementary energy; high arch 
dams 
 

 

 
1  Introduction 

 
During the numerical analysis of geotechnical 

structures, the structural displacements, stress fields 
and yielding zones influenced by reinforcements are 
generally used to evaluate reinforcement effects. But 
the results of numerous calculations indicate that the 
reinforcement influence is usually small. Therefore, 
evaluating the reinforcement effect using this method 
can result in unreasonable conclusions. In order to 
resolve this problem, Yang et al. [1–4] developed and 
applied the deformation reinforcement theory. 

High arch dams and their foundations can be 
regarded as complicated highly hyperstatic structures. 
They have a great overloading capacity before 
monolithic failure of dams through local failure 
phenomena, such as the cracking of dam-heel, the 
shear compression failure of dam-toe, dislocation of 
faults. In classical limit analysis, the structure has an 
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ultimate bearing capacity only when a loading path is 
given. Local failure means that the structure is in the 
limit state and the external load is the ultimate bearing 
capacity. So the classical limit analysis cannot analyze 
the mechanical behavior of structures after local 
failure.  

The deformation reinforcement theory mainly 
studies the structural behavior or structural failure 
behavior after the load exceeds the ultimate bearing 
capacity of structures. The deformation reinforcement 
theory can be mainly summarized: for the given 
external loads on structures, there is a region where the 
unbalanced force leads to the first failure region. In 
order to maintain the stability of structures, this region 
needs to be reinforced. The magnitude of reinforce- 
ment force is equal to the unbalanced force but its 
direction is opposite. Minimum plastic complementary 
energy principle is the foundation of deformation 
reinforcement theory, and for the given external loads, 
the structure always has a tendency to approach the 
lowest possible reinforcement force and the largest 
possible self-bearing force. 

In this paper, the general elastoplastic theory is used 
to rebuild the theoretical framework of deformation 
reinforcement theory, and the structure stability theory 
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is developed based on the plastic complementary 
theory. The comparison between the deformation 
reinforcement theory and the rigid limit equilibrium 
method is made. Then the global stability of high arch 
dams is analyzed and compared with that obtained from 
other methods. Finally, the deformation reinforcement 
theory is used to analyze the anchorage forces of 
dam-toes, fractures of dam-heels, and treatment of faults 
of Baihetan arch dam. 

 

2  Stability definition and instable 
mechanism of elastoplastic structures 

 

2.1 Associated perfect elastoplastic constitutive 

relationship 
The linear-elastic stress-strain relationship is 

expressed in tensors and vectors, i.e. : D   or 
: C  , where   and   are the second order 

stress and strain tensors, respectively; D and C are the 
fourth-order elastic and flexibility tensors, respectively. 
The incremental elastoplastic constitutive relationship 
[5] can be written as  

pd : (d d ) D                            (1) 

where p  is the plastic strain tensor. Equation (1) can 

be further written as  
e pd d d                                (2) 

where 
ed : d D  , p pd : d D                   (3) 

In this paper, the material constitutive behavior is 
presented in the strain space, in which a strain 
increment d  is known. As shown in Eq.(1), the 
main concern of the elastoplastic mechanics is to 
determine pd . In this paper, the associated flow rule 
is used, and its yielding condition [6] is 

( ) 0f f                                (4) 

The consistent condition is 

d : d 0
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The associated normality flow rule is  

pd d
f 







                              (6) 

According to the consistent condition (Eq.(5)) and 
the normality flow rule (Eq.(6)), an important 
relationship can be obtained: 

pd : d 0                                 (7) 
Equation (7) is a universal constitutive equation for 

perfect elastoplastic materials with the associated flow. 
Constitutive equations of deformation reinforcement 

theory should be written in an incremental form. 
Figure 1 shows typical stress adjustments. The initial 
stress state, 0 , is required to be stable, i.e. 0( ) 0f  . 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1 Schematic illustration of elastoplastic stress adjustments. 

 
Given a strain increment   in the initial state, the 

corresponding stress increment is e :  D  , which 
is assumed to be an elastic loading, e

1 0     . If  

1( ) 0f                                   (8) 

the strain increment   results in a plastic loading, 
otherwise the material response is elastic.  

The differential forms of stress and strain 
increments can be written in incremental forms:  

p: ( )    D                           (9) 

p f 
  





                             (10) 

Equations (9) and (10) can be regarded as the integral 
forms of Eqs.(1) and (6). According to the integral mean 
value theorem, Eq.(10) is exactly tenable if /f   is 
determined by the stress state of a point that is properly 
chosen according to the path from ̂  to  . 
Theoretically, the point exists, but it is difficult to be 
determined analytically. In this paper, /f   is 
determined by the final stress state  . As described 
above, the difference between the elastic loading state 
and the final state is the plastic stress increment, i.e. 

p
1     . So the plastic stress increment can be 

expressed as 
p p

1: : ( )    C C                     (11) 

Substituting Eq.(11) into Eq.(10), and supposing 
that   is on the yielding surface, the final stress state 
can be determined as  

1: ( )
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C

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

, ( ) 0f             (12) 

If 1( ) 0f  , then 1  . For a loading process, 
we can get 
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