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a b s t r a c t

High speed direct drive motors enable the use of Air Foil Bearings (AFB) in a wide range of
applications due to the elimination of gear forces. Unfortunately, AFB supported rotors are
lightly damped, and an accurate prediction of their Onset Speed of Instability (OSI) is
therefore important. This paper compares two fundamental methods for predicting the
OSI. One is based on a nonlinear time domain simulation and another is based on a
linearised frequency domain method and a perturbation of the Reynolds equation. Both
methods are based on equivalent models and should predict similar results. Significant
discrepancies are observed leading to the question, is the classical frequency domain
method sufficiently accurate? The discrepancies and possible explanations are discussed
in detail.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For almost 150 years, bearing-influenced rotor vibrations have attracted the attention of engineers and researchers. In
one of the first documents found in the literature, dated 1869, Rankine [1] reported the amplification of shaft lateral
vibrations at different (critical) speeds. In 1894, Dunkerley [2] presented an approximate method for finding the natural
frequencies or critical “whirling” speeds of simplified rotor systems. In 1919, Jeffcott [3] published one of the most sig-
nificant contributions to rotor dynamics, in which the lateral vibration of loaded shafts in the neighbourhood of a whirling
speed was addressed. With the significant developments of rotating machines in the 1920s, especially driven by steam
turbines [4], the influence of fluid film bearings on the lateral shaft vibrations became a very important research topic.
Motivated by the necessity of enlarging the operational range of steam turbines, the influence of higher angular velocities on
the shaft lateral vibrations was investigated by Newkirk and Taylor [5] in 1925. They documented not only the increase of
shaft lateral vibrations while crossing over the first critical speed but also, for the first time, the severe unexpected
vibrations about twice the first critical speed. In 1927, with an iterative approach based on assumed shaft mode shapes and
the new concept of “nonlinear oil springs”, Stodola [6] linked rotor lateral vibrations, bearing stiffness and their dependence
on journal eccentricity. Using a rigid rotor, Newkirk [7] experimentally proved in 1931 that half-speed whirl could occur
over a wide speed range, well below twice the first critical speed. Using a simplified infinite-width bearing model and
disregarding cavitation, Swift [8] analytically investigated the non-steady conditions in journal bearings. Taking into account
bearing as well as rotor flexibility, Smith [9] reported the possibility of four critical speeds for non-symmetrical rotors, a
remarkable achievement in the beginning of the 1930s, an era characterised by the absence of digital computer power.
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The development of digital computers since the 1940s has strongly facilitated researchers to evaluate more complex and
sophisticated mathematical models for describing rotor and bearing dynamics. It has encouraged the development of new
alternative procedures to predict bearing-influenced rotor dynamic response and stability [10–13] in the 1950s and 1960s.
From the viewpoint of solid mechanics, rotors with complex geometry could be refined using the transfer matrix method
[14,15] and later on the finite element (FE) method [16] to account for distributed rotor mass, inertia, and gyroscopic effect.
From the viewpoint of fluid film bearing dynamics, effects of fluid compressibility [17–19] and inertia [20–22], cavitation
[23] and turbulence [24] could be numerically investigated and more accurately predicted. For example, lubricant com-
pressibility strongly influences the static and dynamic behaviour of gas bearings as already reported by Harrison in 1913

Nomenclature

a Nodal vector
a Scaler field quantity
A, B bearings
A state space matrix
b, ~b structural damping per unit area, ~b ¼ C=ðpaωÞb
B shape function derivatives matrix
C radial clearance
D, ~D bearing damping, ~D ¼ωC=ðpaR2ÞD
D, ~D damping matrix, ~D ¼ ωC=ðpaR2ÞD
~Ds first-order coefficients, ~Ds ¼ ~D� ~G
e, ε journal eccentricity (or e ¼ element), ε¼ e=C
E modulus of elasticity of foil
f γ direction cosines
f; ~f bearing force vector, ~f ¼ 1=ðpaR2Þf
F; ~F bearing force components, ~F ¼ 1=ðpaR2ÞF
gðÞ nonlinear vector function
G, ~G gyroscopic matrix, ~G ¼ ω2C=ðpaR2ÞG
h, ~h film height, ~h ¼ h=C
hb bump foil height
hc; ~hc film height correction, ~hc ¼ hc=C
hr, ~hr film height (rigid), ~hr ¼ hr=C
hs; ~hs slope height, ~hs ¼ hs=C
~hc foil deformation vector
i Pad, i¼1,2,..., Np
I mass moment of inertia
I identity matrix
k, ~k structural stiffness per unit area, ~k ¼ C=pak
K, ~K bearing stiffness, ~K ¼ C=ðpaR2ÞK
K, ~K stiffness matrix, ~K ¼ C=ðpaR2ÞK
l0 bump half length
l1,l2 distance to bearings
L, ~L bearing length, ~L ¼ L=R
μf Foil friction coefficient
m mass
M, ~M mass matrix, ~M ¼ω2C=ðpaR2ÞM
N Number of fluid film nodes
Np number of pads
N shape function matrix
~pm Arithmetic mean pressure vector
p, ~p film pressure, ~p ¼ p=pa
pa ambient pressure
pγ , ~pγ perturbed pressure, ~pγ ¼ Cpγ=pa
~p pressure vector
~qc Structural flexibility complex form
q, ~q structural flexibility per unit area, ~q ¼ paq

=C ¼ 1= ~k

r residual vector
R journal radius
s advection vector, s¼ fS;0gT
S compressibility number, S¼ 6μω=pa R=C

� �2
Sb bump foil pitch
t time
tb thickness of bump foil
tt thickness of top foil
x; y; z; ~z Cartesian coordinates, ~z ¼ z=R
y state vector
w; ~w load vector, ~w ¼ 1=ðpaR2Þw
W ; ~W static load components, ~W ¼ 1=ðpaR2ÞW
z rotor state vector
z1 rotor displacement vector, z1 ¼ ε
z2 rotor velocity vector, z2 ¼ _ε
α bearing position
Γ fluidity matrix
Δε perturbation amplitude
ε eccentricity vector
η structural loss factor of foils
θ, ~θ circumferential angle, ~θ ¼ θR
θl first pad leading edge angle
θs first pad slope extend
θt first pad trailing edge angle
λ complex eigenvalue, λ¼ ~ωniþ ~β
μ dynamic viscosity
ν Poisson's ratio of foil
ξi; ηj gauss points
τ dimensionless time, τ¼ωt
Φ fluid domain
ψ film state variable, ψ ¼ ph
ψ film state vector
ω angular speed of journal
ωn, ~ωn eigenfrequency, ~ωn ¼ωn=ω
ωs, ~ωs excitation frequency, ~ωs ¼ωs=ω
γ Coordinates x, y
0 zero matrix
CG Center of Gravity
FE Finite Element
LD Logarithmic Decrement, LD¼ �2π ReðλiÞImðλiÞ
ODE Ordinary Differential Equation
OSI Onset Speed of Instability
PDE Partial Differential Equation
∇� divergence
∇ gradient, ∇¼ ∂=∂θ; ∂=∂~z

� �
ð€Þ time derivative, d2=dτ2

ð_Þ time derivative, d=dτ
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