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a b s t r a c t

Hysterically damped free and forced vibrations of axial and torsional bars are investigated using
a closed form exact method. The method is exact and yields closed form expressions for the
vibratory displacements. This is in contrast with the well known eigenfunction superposition
method which requires expressing the distributed forcing functions and the displacement
response functions as infinite sums of free vibration eigenfunctions. The hysterically damped
free vibration frequencies and corresponding damped mode shapes are calculated and plotted
instead of undamped free vibration and mode shapes which is typically computed and applied
in vibration problems. The hysterically damped natural frequency equations are exactly derived.
Accurate axial or torsional amplitude vs. forcing frequency curves showing the forced response
due to distributed loading are displayed with various hysteretic damping parameters.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

As the bar executes its free vibrations, it will be seen that the amplitude decreases, even though viscous or aerodynamic
damping forces are not present. The decay in amplitude is due to hysteretic damping. Hysteretic damping may be incor-
porated into the problem by regarding the elastic moduli as complex quantities [1], that is,

E� ¼ Eð1þ iηÞ; G� ¼ Gð1þ iηÞ (1)

where E¼Young's modulus; G¼Shear modulus; i¼
ffiffiffiffiffiffiffiffi
�1

p
; and η¼material loss factor. Values of η are typically very small for

metals ð10�6oηo10�3Þ, but can be quite large for other materials such as rubber or plastic ð10�2oηo1Þ.
It is certain that the hysteretic damping has an effect on the natural frequencies and corresponding mode shapes.

Undamped natural frequencies and corresponding mode shapes are typically computed and applied in the vibration ana-
lysis, however in the present paper hysterically damped natural frequencies and corresponding damped mode shapes are
computed. Chen et al. [2] investigated free vibrations of a single degree of freedom (SDOF) system with hysteretic damping.
Ribeiro et al. [3] studied free and forced vibrations of a SDOF with hysteretic damping and viscous damping. Leissa and Qatu
[4] introduced the damped free vibrations of strings and bars.

Even though for the last two decades some researchers have investigated axial vibrations [5–9] and torsional vibrations
[9–13] of bars, studies on forced vibrations [7,10] are very limited compared to the free vibration. Also only one paper dealt
with both the axial and torsional vibration [9].
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One of the representative methods solving the forced vibration is the eigenfunction superposition method (also called "modal
expansion" method). For continuous systems the standards texts often do not consider forced vibrations at all. If they do, they may
lay out the continuous function form of the eigenfunction superposition (ES) method, but with very few exceptions [4,14], they
exhibit no numerical results. Only a few of texts [4,15] display accurate curves showing the forced response due to distributed
loading. Some show sketches of amplitude–frequency curves which are roughly drawn and not from computed data. To utilize the
ES method one must first solve the free, undamped vibration problem to obtain the eigenvalues (frequencies) and corresponding
eigenfunctions (mode shapes). The distributed loading must then be expanded into an infinite series, each term of which has the
form of an eigenfunction. This involves evaluating integrals which may be quite complicated. The vibratory displacement is also
assumed as an infinite series of eigenfunctions, each of which behaves as a single degree of freedom responding to its corre-
sponding loading function. The displacement at any point is finally evaluated by summing the responses of the individual modes.

The present paper demonstrates a method for solving free and forced vibrations axial and torsional bars with hysteretic
damping which does not require knowledge of the free vibration eigenfunctions. Rather, the problems are solved as
boundary value problems in a straightforward manner, yielding closed form (instead of infinite series), exact solutions.
Although the closed form exact method is straightforward, its use is less either in textbooks or in research journals when
damping is considered. Leissa and Qatu [4] and Leissa [16] studied closed form exact solutions for the steady state vibrations
of continuous systems subjected to distributed exciting forces with and without damping. However, they did not give
numerical results. Leissa [16] studied closed form solutions for the steady state vibrations of continuous systems subjected
to distributed exciting forces with and without damping. He disclosed the superiority in accuracy and efficiency of the
closed form method compared with the eigenfunction superposition method. Virgin and Plaut [17] presented the effect of
axial load on forced vibrations of beams with viscous damping subjected to distributed loads in a closed form exact manner.

In the present study, hysterically damped free and forced vibrations of axial and torsional bars are investigated using a
closed form exact method. Instead of undamped natural frequencies and corresponding mode shapes which are typically
computed and applied in vibration problems, hysterically damped natural frequencies and corresponding damped mode
shapes are computed. The hysterically damped natural frequency equations are exactly derived. In the hysterically damped
free vibration, effects of hysteretic damping on natural frequencies and mode shapes are studied. Some hysterically damped
axial and torsional mode shapes are plotted. Accurate axial or torsional amplitude vs. forcing frequency curves showing the
forced response due to distributed loading are displayed with various hysteretic damping parameters.

2. Hysterically damped free vibrations of axial bars

The equation of motion for hysterically damped free vibrations of an axial bar is given by

Eð1þ iηÞ∂
2uðx; tÞ
∂x2

¼ ρ
∂2uðx; tÞ

∂t2
(2)

where x¼axial coordinate; uðx; tÞ is the axial displacement in the x-direction; t¼time; and ρ¼mass per unit volume. The bar
is assumed to be homogeneous and isotropic, thus E and ρ remain constant. On the assumption of a harmonic time response
for hysterically damped axial free vibration

uðx; tÞ ¼UðxÞ eitωd (3)

where ωd ¼ hysterically damped axial natural frequency and UðxÞ¼normal function of uðx; tÞ. Substituting Eq. (3) into the
governing Eq. (2) results in

Eð1þ iηÞd
2UðxÞ
dx2

þρω2
dUðxÞ ¼ 0 (4)

Using the non-dimensional axial coordinate ξ¼ x=L, where L is a length of the bar, yields

ð1þ iηÞd
2UðξÞ
dξ2

þλ2dUðξÞ ¼ 0 (5)

where λd is the non-dimensional hysterically damped axial natural frequency defined by

λd ¼ωdL
ffiffiffi
ρ

E

r
(6)

General solution to Eq. (5) could be expressed by

UðξÞ ¼ C1e
iλdffiffiffiffiffiffiffi
1þ iη

p ξþC2e
� iλdffiffiffiffiffiffiffi
1þ iη

p ξ
(7)

where C1 and C2 are arbitrary integration constants.
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