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a b s t r a c t

An algorithm that integrates Karhunen–Loeve expansion (KLE) and finite element method
(FEM) is proposed to carry out random vibration analysis of complex dynamic systems
excited by stationary or non-stationary random processes. In KLE, the auto-covariance
function of random process is discretized using orthogonal basis functions. During the
response calculations, the eigenvectors of KLE are applied as forcing functions. Three
methods are proposed to carry out the random vibration analysis termed as, Method 1A,
Method 1B and Method 2. In Method 1A and Method 1B, the basis functions are chosen
such that they include multiples of complete or half-cosine and sine functions over the
selected time. In Method 2, the basis functions are chosen to be simple piecewise con-
stants. The proposed algorithm is applied to a 2DOF system, a cantilever beam and a
stiffened panel for both stationary and non-stationary excitations. Results show that three
methods can describe the statistics of the dynamic response with sufficient accuracy.
However, Method 1A results have a relatively larger error than that for Method 1B and
Method 2 during initial transient time. The Method 2 results have an excellent agreement
with analytical results. Moreover, the runtime of Method 2 algorithm is significantly less
than both Method 1A and Method 1B algorithms even though its usage results in an
increase in the number of KLE terms. Furthermore, Method 2, unlike Method 1A and 1B,
neither yields negative and/or infinite eigenvalues for the auto-covariance function nor
large inaccuracies.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Many engineering structures are subjected to random dynamic loads which lacks pattern and regularity in time and
space domains. Random excitations often occur in many real-life vibration problems, e.g. gust loads on wings, excitations
caused by turbulent boundary layers on panels, and non-stationary wind and seismic loads on tall buildings. Hence, random
vibration analysis has been drawing increased attention in recent years from the designers of many aerospace, civil, and
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mechanical structures. The random processes are often simplified to be a stationary Gaussian process so that it is convenient
to carry out the random analysis. However, many engineering structures encounter non-stationary and non-Gaussian
random loadings. The development of the treatment of non-stationary non-Gaussian excitations is however inhibited by
both extensive computational cost and mathematical intricacies. With the relentless progress in high-performance com-
puting, numerical methods are being increasingly used to perform random vibration analysis of complex structures [1].

A random process can be described using time or frequency domain methods using auto-covariance function and power
spectral density (PSD) function, respectively. For a stationary Gaussian process, the PSD function is usually used to represent the
random process [2–4]. The PSD of the response under stationary Gaussian excitations can be obtained from the system transfer
functions in the frequency domain, an approach that is rather mature. For the non-stationary processes, the marginal probability
density functions (PDF) of the excitation may have positive real domain which might be finitely bounded. So, the auto-covariance
functions are used to define the random processes in the time domain. However, the response of dynamic systems excited by non-
stationary random processes has not been studied in great depth [5]. The response of dynamic systems under non-stationary
random excitations [6–8] has been conducted using an integral method, meaning that integrations are performed by using
analytical or numerical methods for the response calculations. This is possible for simple structures, but for large complex
structures, the computational cost is too high to perform the vibration analysis. Mostly, the non-stationary excitations are
decomposed into a stationary random process and a modulating function [8], which is generally limited to finite DOF systems [9].

In most applications of random analysis, it is necessary to represent the continuous random processes in terms of random
variables and it can be achieved by discretizing the random processes. So, when auto-covariance functions are used to define random
excitations, the first step is to discretize the auto-covariance functions while calculating the response of the system [10]. Recently,
efforts have beenmade to obtain the random system response by using Karhunen–Loeve expansion (KLE) of the auto-covariance. The
random processes can be decomposed into random variables named as basis variables and deterministic orthogonal functions in the
KLE. The set of basis variables is a set of independent identically distributed random variables with zero mean and unit variance. The
KLE serves as a useful and efficient tool for discretizing second-order random process with known covariance function [11]. However,
the efficiency of KLE for simulating random process highly depends on the availability of accurate eigenvalues and eigenfunctions of
the auto-covariance functionwhen solving a Fredholm equation of the second kind [12]. The KLE is often carried out by using Monte-
Carlo method [13] and polynomial chaos method [14] for the non-Gaussian non-stationary processes. Recently, an algorithm for
decomposing auto-covariance function using orthogonal decomposition is presented by Mulani et al. [5,15] and Phoon et al. [16]. In
this method, the eigenvalues and eigenfunctions are obtained by using numerical methods such as analytical method [5], Galerkin
projection method [17] and collocation technique [18]. The analytical method is only efficient for simple definitions of the auto-
covariance functions. The Galerkin projection method is an efficient method for solving eigenvalues and eigenfunctions of auto-
covariance. However, it often yields negative eigenvalues of the auto-covariance function (based upon type of basis functions) and it
also may result in numerical inaccuracies during integration while solving the Fredholm equation of the second kind. The collocation
technique is another efficient method to obtain the eigenvalues and eigenvectors of the auto-covariance matrix by converting the
auto-covariance function into an auto-covariance matrix. The collocation technique is not as accurate as the Galerkin projection
method, although the method does not yield negative and infinite eigenvalues [5]. A wavelet-Galerkin scheme method [12] is also
proposed recently, which can reduce the computational cost. However, this method does not have any clear advantage for strongly
correlated systems but also ignores the orthogonality of the eigenvectors for non-stationary processes.

In the authors' previous works [5,19,20], a set of basis functions which are trigonometric basis functions and piecewise
linear interpolation functions have been chosen to obtain the eigenvalues and eigenvectors for KL expansion. It has made
good progress in solving simple single-degree-of-freedom system, 2DOF system and a simple beam subjected stationary and
non-stationary excitations. However, the accuracy, effectiveness and computational efficiency were not deeply studied
when piecewise linear basis functions were used to carry out the stationary and non-stationary random vibration analysis.
Meanwhile, the application of KLE for random vibration analysis as developed by the authors was still not feasible for more
complex structures. Therefore, it is necessary to further develop an approach to study the random vibration analysis of large
and complex structures under stationary and non-stationary excitations.

In order to obtain a method that is suitable for complex structures’ random vibration analysis, the work conducted by the
authors [5,19,20] is extended here. An algorithm that integrates KLE and FEM is proposed to conduct the random vibration
analysis for any dynamic system, simple or complex; and for any random excitations, stationary or non-stationary. Then, the
proposed algorithm is applied to a simple 2DOF system, a continuous beam structure and a complex stiffened panel for both
stationary and non-stationary excitations. The outline of this work is as follows: In Section 2, the theory of Karhunen–Loeve
expansion is addressed firstly. Then, an algorithm is proposed for random response calculation of the complex structures
under stationary and non-stationary excitations. The proposed method is applied from 2DOF through beam and finally
extended to a stiffened panel in Section 3. Conclusions will be drawn in the last Section.

2. Karhunen–Loeve expansion

In many engineering problems, excitations are described as random processes but they are also functions of time or
spatial dimensions. In this case, it is necessary to consider joint probability density functions for the excitations. This
description becomes cumbersome during calculation of responses using the joint distribution of many random variables.
Hence, it is advantageous to study the simple interaction of two random variables and extract as much information as
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