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a b s t r a c t

This paper examines the coupling loss factor, which is an important parameter in the field
of statistical energy analysis. A comparison is made between damped and undamped
systems of two identical coupled oscillators using modal analysis. The oscillator energies
and the power flow between oscillators are used to examine the transient coupling loss
factors for the damped and undamped systems. Comparisons are drawn between the
transient coupling loss factors and the steady-state coupling loss factor of classical SEA.
The undamped transient coupling loss factor is determined numerically, since an analy-
tical solution does not exist. It is shown that multiple formulations can be used to
determine the transient coupling loss factor, and that certain formulations are preferable
for moderately to strongly coupled systems.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, the coupling loss factor (CLF) will be examined for damped and undamped systems of two-coupled
oscillators. In statistical energy analysis (SEA), the CLF between two subsystems is defined as the ratio between the dif-
ference between time-averaged modal energies of the subsystems and the rate of energy flow between them. In the next
section, the general concepts of SEA and the CLF will be outlined. The CLF is an important parameter in the field of statistical
energy analysis [1–4]. Examining the CLF for undamped oscillators provides insight into whether SEA is a viable theoretical
model for conservative systems. Currently, SEA provides valuable information about the rate of energy flow between
nonconservative systems undergoing high-frequency vibration. The accuracy of the SEA model has not been examined in
detail for conservative systems. Classical SEA is based on the conservation of energy, or the application of the first law of
thermodynamics to structures. Since the equations of motion of coupled oscillators can be solved analytically, such systems
are useful for validating SEA results, and have been studied extensively [3,5–8].

The goal of this paper is to examine and compare the CLFs for undamped and damped systems of coupled oscillators. For
systems at steady state, the CLF is referred to as the steady-state CLF. Likewise, the transient CLF describes a system that is not
at steady state. A detailed effort has not yet been made to examine the CLF for undamped oscillators. As such, there remains
a need to evaluate the viability of applying SEA techniques to undamped systems. Such an analysis will provide insight into
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the behavior of undamped coupled oscillators in relation to the more well-known results for damped oscillators. This paper
considers deterministic systems of undamped and damped coupled oscillators that are each initially excited by a velocity
impulse.

The governing equations of motion are solved for damped and undamped systems of coupled oscillators. Parameters are
first determined for the undamped case and are then extended to the damped case. Expressions are obtained for the
undamped and damped oscillator energies. Subsequently, “power flow” expressions are obtained for the undamped and
damped systems. In the context of SEA, the term “power flow” refers to the time-rate of energy exchange between systems,
or the time-derivative of the energy flow between systems. As such, the terminology does not refer to a flow of power, but to
the rate of change of energy flow. Since the term “power flow” is commonly used in SEA, it is the notation that has been
adopted in this paper [2,4–6]. Finally, multiple formulations for the transient CLF are determined using the time-averaged
oscillator energy difference and power flow.

2. Review of the assumptions of statistical energy analysis

In SEA, physical structures are organized into subsystems. These subsystems are approximated as groups of oscillators. A
SEA subsystem with a sufficient number of modes accurately approximates the spatial and time-averaged behavior of the
actual system [21]. Only modes within a frequency band of interest, Δω, centered at ω, are considered. Each subsystem, i, has
a corresponding energy, Ei, and number of modes, Ni. Typically, each subsystem exchanges energy with neighboring sub-
systems as well as the environment. The energy exchange rate between SEA subsystems is commonly referred to as the
power flow in SEA publications [5].

For a SEA system composed of n subsystems, the power flow balance of the ith subsystem is [9]

_Ei ¼ _E
inj
i � _E

diss
i þ

Xn
i ¼ 1;ia j

_Ei-j; (1)

where _Ei ¼ dEi
dt is the time-rate of energy change (power flow) of subsystem i, _E

inj
i is the injected power, and _E

diss
i is the

dissipated power flow from subsystem i. _Ei-j is the power flow from subsystem i to subsystem j. Thus, the rightmost term of
Eq. (1) represents the net power flow between oscillator i and all other oscillators. For steady-state SEA systems, _Ei ¼ 0. The
power balance in Eq. (1) is used in transient SEA (TSEA) [10–12], and will be used in this paper to determine the CLF for
systems of coupled oscillators. The power flow due to dissipation of subsystem i, _E

diss
i , and the power flow to a subsystem j,

_Ei-j, can be expressed analogously using the damping loss factor (DLF) and CLF, respectively. In SEA, the power flow out of a
system is taken to be proportional to the energy of the system. Accordingly, the DLF and CLF are constants of proportionality

Nomenclature

Ei energy of subsystem i
Edissi dissipated power flow from subsystem i
Einji injected power flow into subsystem i
E0 initial system energy
Etot total system energy
_Ei-j power flow from subsystem i to subsystem j
_Eij net power flow between subsystems i and j
Ei
Ni

modal energy of subsystem i
Ê
i

kinetic energy envelope of subsystem i
Fi excitation force on subsystem i
Ni number of modes for subsystem i
Pij time-average power flow between subsystems

i and j
Pi time-average of _Ei

Ti kinetic energy of oscillator i
Ui potential energy of oscillator i
_̂x i envelope velocity of subsystem i
c viscous damping constant
k spring stiffness
m oscillator mass
t time

xi position degree of freedom of oscillator i
α β=2
β c=m
ΔE difference between oscillator energies
Δω SEA frequency band
ϵ coupling strength
ηi damping loss factor of subsystem i
ηij coupling loss factor (CLF) from subsystem i to j
ηðsÞij steady-state coupling loss factor between

subsystems i and j
χ kϵ=m
ω̂ beat frequency
ω center of the frequency band Δω blocked

natural frequency for coupled oscillators
ωi ith natural frequency
ð�ÞðdÞ damped system parameter
ð�ÞðuÞ undamped system parameter
€ð�Þ second derivative of “ð�Þ” with respect to time

(t)
_ð�Þ; dð�Þdt first derivative of “ð�Þ” with respect to time (t)
〈ð�Þ〉t time-average of “ð�Þ”
≔ equal by definition
E approximately equal
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