FISEVIER

Contents lists available at ScienceDirect

Journal of Sound and Vibration

journal homepage: www.elsevier.com/locate/jsvi

Development and experimental verification of a robust active noise control system for a diesel engine in submarines

D. Sachau^a, S. Jukkert^{a,*}, N. Hövelmann^b

- ^a Department of Mechanical Engineering, Helmut-Schmidt-University, Hamburg 22043, Germany
- ^b ThyssenKrupp Marine Systems GmbH, Kiel 24143, Germany

ARTICLE INFO

Article history:
Received 15 June 2015
Received in revised form
23 February 2016
Accepted 18 April 2016
Handling Editor: P. Joseph
Available online 25 April 2016

ABSTRACT

This paper presents the development and experimental validation of an ANC (active noise control)-system designed for a particular application in the exhaust line of a submarine. Thereby, tonal components of the exhaust noise in the frequency band from 75 Hz to 120 Hz are reduced by more than 30 dB. The ANC-system is based on the feedforward leaky FxLMS-algorithm. The observability of the sound pressure in standing wave field is ensured by using two error microphones. The noninvasive online plant identification method is used to increase the robustness of the controller. Online plant identification is extended by a time-varying convergence gain to improve the performance in the presence of slight error in the frequency of the reference signal.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Exhaust noise of the combustion engine in general contains several harmonic components of the fundamental frequency (CFR – cylinder firing rate) that depend on the engine speed. The geometry of the manifold and of the tail pipe as well as the plant conditions (i.e. exhaust gas temperature, gas flow and boundary impedances) determine the prominence of individual harmonics in the exhaust noise spectrum outside the tail pipe. Tones with frequencies lower than 150 Hz are especially prominent in the noise spectrum of large-bore engines used in submarines. During the diving cruise with a snorkel, the diesel engine is operated with a unique revolution speed. This determines the acoustic signature of the submarine such that positioning and identification of the submarine are facilitated.

Active noise cancellation (ANC) methods are of interest here due to the physical limitations of passive measures at low frequencies. Thereby, the volume requirements of passive measures are often impractically high for submarine applications. ANC-systems in general use sensors (error sensors) to measure the disturbing noise (primary noise), a controller and actuators (secondary sources) to generate the secondary noise for canceling the primary noise. Additional sensors (reference sensors) can be used to reference the primary source.

An ANC-system in the exhaust line of a large-bore diesel engine faces serious challenges such as high temperature, high sound pressure levels (SPL), standing waves phenomena, a time-varying environment and slightly varying disturbance frequencies. In the case of applications with a non-acoustic reference sensor, also an offset or a mismatch in the estimation of disturbance frequencies negatively affects the performance. Various existing ANC approaches for exhaust

E-mail address: jukkerts@hsu-hh.de (S. Jukkert).

^{*} Corresponding author.

Nomenclature		S	Impulse response of the secondary path (FIR filter coefficients)
Α	Tube area	S	Secondary plant response
b	Bandwidth parameter of a band-pass filter	t	Continuous time
С	Speed of sound	$T_{\rm s}$	Sampling time, $t = nT_s$
C_1, C_2	Constants of integration	u	Signal samples buffer for the online modeling
d	Disturbance signal		algorithm
e	Error signal of the controller	ν	Acoustic mass velocity
f	Frequency	V	Complex amplitude of the acoustic mass
g	Error signal of the online modeling		velocity
h	FIR filter coefficients for the online modeling	w_0, w_1	Controller coefficients (FIR filter)
	algorithm	W	Controller response
J	Cost function of the LMS algorithm	X	Coordinate, reference signal
k	Wavenumber	y	Controller output signal
K	Amount of flanks in RPM sensor signal con-	Y	Characteristic impedance for waves in a pipe
	sidered for CFR estimation	Z_{is}	Internal impedance of a source
Μ	Mach number; number of sinusoids in a	α	Acoustic pressure attenuation constant
	disturbance signal	β	Leakage factor
n	Discrete time index	γ	Leakage term, $\gamma = 1 - \mu \beta$
N	number of sensor marks used in RPM sensor	ζ	Specific acoustic impedance
p	Acoustic pressure	ϑ	Temperature
P	Complex amplitude of the acoustic pressure;	λ	Wavelength
	Primary plant response	μ	Convergence factor
p	Impulse response of the primary path (FIR	ξ	Power estimation of the error signal
	filter coefficients)	Q	Scaling factor for the online modeling
Q	Band-pass filter response	ϕ	Phase shift
r	square wave signal of the RPM- sensor; radius	σ	smoothing factor for signal power estimation
	of the tube	ω	Angular frequency
R	Reflection coefficient	Ω	Normalized angular frequency, $\Omega = \omega T_s$

lines of a combustion engine do not address all these problems. Most use error microphones outside the exhaust line and, in the case of a feedforward controller for tonal disturbances, a tachometer to generate the reference signal [1–7]. Therefore, the problem of the observability of the sound pressure in the standing wave field inside the exhaust line is avoided. In ANC-systems using an acoustic reference sensor inside the exhaust line [8–14] and/or error microphones inside the exhaust line [15–19], it is assumed that they do not lie in the nodes of the standing wave field. To overcome the problem of time-varying plants, some of the considered ANC-systems [4–8] use either different online plant modeling methods or a robust controller.

An especially appropriate online plant modeling method for applications with high SPL of the primary source is the noninvasive online plant identification method [20–22]. Our experiments, however, show that the nominal performance of a tonal ANC-system with noninvasive system identification can be decreased hardly by a slight frequency mismatch in the reference signal.

This paper presents the development and experimental validation of an ANC-system designed for a particular application in the exhaust line of a submarine. The ANC-system is based on the feedforward leaky FxLMS-algorithm [23,24]. The observability of the sound pressure in standing wave field is ensured by using two error microphones. The noninvasive online plant identification method is used to increase the robustness of the controller. Online plant identification is extended by a time-varying convergence gain to improve the performance in the presence of slight error in the frequency of the reference signal.

2. Problem description

On the strength of constructive restrictions in submarines, the ANC-system has to be mounted directly behind the passive muffler. Tonal noise components canceled insufficiently by the passive muffler should be canceled additionally by the ANC-system. Sensors and actuators have to be placed along a duct segment of 800 mm length and 150 mm diameter, as sketched in Fig. 1. An electrodynamic loudspeaker serves as the actuator. Due to the high exhaust gas temperature, the loudspeaker has to be protected by a branch pipe containing a cooler. The error sensors have to be heat resistant. An engine speed sensor is available for reference signal generation.

Download English Version:

https://daneshyari.com/en/article/286937

Download Persian Version:

https://daneshyari.com/article/286937

<u>Daneshyari.com</u>