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a b s t r a c t

Dynamic analyses of a multilayered one-dimensional quasicrystal plate subjected to a
patch harmonic loading with simply supported lateral boundary conditions are presented.
The pseudo-Stroh formulation and propagator matrix method are used to obtain the exact
three-dimensional response of the plate. In order to avoid resonance, the frequency of the
patch loading is chosen away from the natural frequencies by introducing a small ima-
ginary part. The patch loading is expressed in the form of a double Fourier series
expansion. Comprehensive numerical results are shown for a sandwich plate with two
different stacking sequences. The results reveal the influence of layering, loading area,
phonon–phason coupling coefficient and input frequency. This work is the first step
towards understanding quasicrystals under intricate loading conditions such as indenta-
tion and impact, and the exact closed-form solution can serve as a reference in con-
vergence studies of other numerical methods and for verification of existing or future
plate theories.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

One group of complex metal alloys, called quasicrystals (QCs), was first discovered by Shechtman in the early 1980s from
the diffraction image of rapidly cooled Al-Mn alloys [1]. This discovery was revolutionary for it showed that QCs exhibit
symmetries that are contradictory to the classical crystalline law of symmetry. Classical crystals are composed of particles
assembled in a unique periodic arrangement in space and must hold two-, three-, four- or six-fold rotational symmetry. QCs,
on the other hand, can be both ordered and nonperiodic which form patterns that lack translational symmetry [2]. QCs in
the real three-dimensional physical space may be seen as a projection of a periodic lattice in the higher dimensional
mathematical space. The projection of the periodic lattice in four-, five-, and six-dimensional space to the physical space
generates one-, two- and three-dimensional QCs, respectively. One-dimensional (1D) QCs, considered in this work, refer to a
three-dimensional structure with atomic arrangement which is quasiperiodic in one direction and periodic in the plane
perpendicular to that direction.

Attributing to its nonperiodic atomic structure, QCs possess properties such as corrosion resistivity, low thermal con-
ductivity, low coefficients of friction, low porosity, high hardness, and high wear resistance. These properties have enabled
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QCs to be applied as thin films and coatings [3]. Due to their advantageous properties, QCs have gained considerable interest
in a wide range of study fields. However, phonon–phason coupling, anisotropy, and nonsymmetry intrinsic in quasicrys-
talline materials present many obstacles to researchers such that most problems are limited to cracks in a half space [2,4,5].
Since plates are of vital importance in structural design [6], plates made of QCs have been studied considerably. These
include works pertaining to the three-point bending of QC thin plates under static and transient dynamic loads [7], static [8]
and free vibration response [9] of multilayered QC plates, and thick QC plate analysis using refined plate theory [10].

In this work, the exact closed-form solution of a multilayered plate made of 1D QCs subjected to harmonic patch surface
loading under laterally simply supported conditions is presented. Patch surface loading is selected in this dynamic analysis
for it is a common loading case that closely reflects reality and an arbitrary distributed load can be approximated by a
number of patch loads. The pseudo-Stroh formalism and the propagator matrix method [11] are utilized in obtaining the
exact solution. Part of the distinction in the application of the pseudo-Stroh formalism and the propagator matrix method in
this work pertains to the explicit double Fourier series expansion of the exact solution, instead of selecting only one Fourier
component as in previous works. Since a sandwich plate is the most common structure in the research of multilayered
plates, numerical illustrations of sandwich plates subjected to uniformly distributed harmonic patch surface loading are
presented. The effects of stacking sequence, input frequency, patch loading area, and phonon–phason coupling on the
harmonic response of sandwich plates are investigated. To the best of the authors’ knowledge, analyses of multilayered
three-dimensional QC plates under harmonic patch loading conditions have not been previously reported in the literature.
Considering that QCs are used in structures which may be subjected to indentation and impact, this work is essential
towards the understanding of QCs under such complex loading. As the solution presented in this work is based on the exact
three-dimensional elasticity, there is no assumption on the aspect ratio commonly used in plate theories. In this sense, the
numerical results presented in this work can serve as a benchmark for various numerical methods in layered QC analysis,
and are further important for checking the accuracy of existing or any future plate theories.

2. Quasicrystalline elastic theory

In this section, the fundamentals of linear elastic theory for QCs are described. Two different elementary excitations are
associated with atomic motion in QCs: phonons and phasons. Phonon displacement ui is related to translation of atoms
whereas phason displacement wi is related to atomic rearrangements along the quasiperiodic direction. Both displacement
fields are needed in the analysis of QCs and are actually coupled with each other [2,3,12].

From the linear elastic theory of QCs [12], the strain-displacement relations are

εij ¼
1
2

∂juiþ∂iuj
� �
wij ¼ ∂jwi (1)

where εij is the phonon strain tensor and wij is the phason strain tensor. The generalized constitutive relations of quasi-
crystalline materials are [12],

σij ¼ CijklεklþRijklwkl

Hij ¼ RklijεklþKijklwkl (2)

where σij is the phonon stress tensor, Cijkl phonon elastic coefficients, Hij phason stress tensor, Kijkl phason elastic coeffi-
cients, Rijkl phonon-phason coupling coefficients, and repeated indices indicate the summation over 1, 2, and 3 (or over x, y,
and z). It should be noted that although for 1D QCs the phonon stress tensor is symmetric, the phason stress tensor is not.
Similarly, the phonon strain tensor is symmetric whereas the phason strain tensor is not [2].

Considering a 1D QC with x- and y-axes as the periodic directions, it follows that the z-axis is the quasiperiodic direction.
Since the z-axis is the quasiperiodic direction, there is no phason displacement in the plane normal to this direction.
Accordingly, wx¼wy¼0. For a hexagonal system and Laue class 10 with point groups 62h2h;6mm;6m2h; and 6=mhmm the
linear constitutive relations in Eq. (2) are expanded as [2]

σxx ¼ C11εxxþC12εyyþC13εzzþR1wzz

σyy ¼ C12εxxþC11εyyþC13εzzþR1wzz

σzz ¼ C13εxxþC13εyyþC33εzzþR2wzz

σyz ¼ 2C44εyzþR3wzy

σxz ¼ 2C44εxzþR3wzx

σxy ¼ 2C66εxy
Hzz ¼ R1 εxxþεyy

� �þR2εzzþK1wzz

Hzx ¼ 2R3εxzþK2wzx

Hzy ¼ 2R3εyzþK2wzy (3)

with C66 ¼ C11�C12ð Þ=2. We point out that the forth-order tensor Cijkl is condensed to a second-order tensor Cij via Voigt
notation with the standard mapping between indices as (11)-(1), (22)-(2), (33)-(3), (23)-(4), (13)-(5) and (12)-(6).
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