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a b s t r a c t

Circular cylindrical shells with flexible boundary conditions conveying pulsatile flow and
subjected to pulsatile pressure are investigated. The equations of motion are obtained
based on the nonlinear Novozhilov shell theory via Lagrangian approach. The flow is set in
motion by a pulsatile pressure gradient. The fluid is modeled as a Newtonian pulsatile
flow and it is formulated using a hybrid model that contains the unsteady effects obtained
from the linear potential flow theory and the pulsatile viscous effects obtained from the
unsteady time-averaged Navier–Stokes equations. A numerical bifurcation analysis
employs a refined reduced order model to investigate the dynamic behavior. The case of
shells containing quiescent fluid subjected to the action of a pulsatile transmural pressure
is also addressed. Geometrically nonlinear vibration response to pulsatile flow and
transmural pressure are here presented via frequency-response curves and time histories.
The vibrations involving both a driven mode and a companion mode, which appear due to
the axial symmetry, are also investigated. This theoretical framework represents a pio-
neering study that could be of great interest for biomedical applications. In particular, in
the future, a more refined model of the one here presented will possibly be applied to
reproduce the dynamic behavior of vascular prostheses used for repairing and replacing
damaged and diseased thoracic aorta in cases of aneurysm, dissection or coarctation. For
this purpose, a pulsatile time-dependent blood flow model is here considered by applying
physiological waveforms of velocity and pressure during the heart beating period. This
study provides, for the first time in literature, a fully coupled fluid–structure interaction
model with deep insights in the nonlinear vibrations of circular cylindrical shells sub-
jected to pulsatile pressure and pulsatile flow.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Shell-like structural components used for aerospace and biomechanical applications are particularly challenging as they
undergo significant deformations and stresses, involve fluid–structure interactions and are made of materials whose
properties are not fully known.

Systematic research on the nonlinear dynamics of shells conveying fluid has been conducted by Païdoussis and it is
synthesized in his monograph [1]. The effects of internal flow on the stability of circular cylindrical shells have been studied
by Païdoussis and Denise [2], Weaver and Unny [3] and Païdoussis et al. [4,5].
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Theory for the dynamic stability of circular cylindrical shells subjected to incompressible subsonic liquid and air flow
have been reported by Amabili et al. [6–9] and experiments by Karagiozis et al. [10,11]. In the theoretical part of these
studies, the shell was assumed to be in contact with inviscid fluid, and the fluid–structure interaction was described by the
potential flow theory. Experiments on nonlinear dynamics of clamped shells subjected to axial flow were described in Ref.
[10] and its visual experimental evidence was provided in Ref. [11]. A subcritical nonlinear softening behavior was
reported for shells subjected to internal and external flow for the first time by Amabili [6]. It was found that, the inter-
action between the shell and the fully developed flow gives rise to instabilities in the form of static or dynamic divergence
at sufficiently high flow velocities. The effect of imperfections on the nonlinear stability of shells containing fluid flow has
been investigated by Amabili et al. [12] by using the most refined model at present; fluid viscosity has also been con-
sidered. Good agreement was shown with the available experimental results for divergence of aluminum shells conveying
water.

Additional work can be found in the literature. The combined effect of geometric imperfections and fluid flow on the
nonlinear vibrations and stability of shells has been investigated by del Prado et al. [13]. The behavior of the thin-walled
shell was modeled by Donnell's nonlinear shallow-shell theory and the shell was assumed to be subjected to a static
uniform compressive axial pre-load plus a harmonic axial load. A low-dimensional model was obtained by using the
Galerkin method and the numerical solutions were found by using a Runge-Kutta scheme. It was shown that the parametric
instability regions, bifurcations and basins of attraction are affected by the initial geometric imperfection and the flow
velocity. The effect of fluid viscosity was also retained by Karagiozis et al. [14] in studying the nonlinear vibrations of
harmonically excited circular cylindrical shells conveying water flow. Periodic, quasi-periodic, sub-harmonic and chaotic
responses were detected, depending on the flow velocity, and amplitude of the harmonic excitation. It was found that, the
softening behavior is enhanced by increasing the flow velocity.

By neglecting the effect of fluid viscosity and considering the potential flow model, nonlinear forced vibrations and
stability of shells interacting with fluid flow were investigated in Refs [15–18]. Koval’chuk [15] used Donnell’s nonlinear
theory together with Galerkin approach and Krylov- Bogolyubov–Mitropol’skii averaging technique to study the non-
linear vibrations of the shell, neglecting the effect of axisymmetric modes. The same theory and solution methodology
was used by Koval’chuk and Kruk [16]. However, in their analysis, the numerical model had six degrees of freedom that
included four asymmetric modes plus two axisymmetric modes. The axisymmetric modes were described as quartic sine
terms. Kubenko et al. [17] extended the previous works of Refs. [15,16] by showing the mathematical procedure for the
Krylov–Bogolyubov–Mitropol’skii method in studying multimode nonlinear free, forced and parametrically excited
vibrations of shells in contact with flowing fluid. Kubenko et al. [18] have also studied the vibrations of cylindrical shells
interacting with a fluid flow and subjected to external periodic pressure with slowly varying frequency. Nonlinear
dynamics of cantilevered circular cylindrical shells subjected to flowing fluid has been investigated by Paak et al. [19], but
the contribution of axisymmetric modes has been neglected. The nonlinear model of the shell was based on Flügge
theory retaining nolinear terms due to mid-surface stretching, and the fluid model was based on the potential flow
theory. The unsteady interaction and asymptotic dynamics of a viscous fluid with an elastic shell has also been examined
by Chueshov and Ryzhkova [20] using the linearized Navier–Stokes equations and Donnell’s nonlinear shallow shell
theory.

A specific type of unsteady flows includes oscillatory and pulsatile flows which occur in biological systems, such as
human respiratory and vascular systems, as well as in many engineering areas, for example, the flow in hydraulic and
pneumatic and pumping systems or applications of heat transfer. Oscillatory and pulsating flows in branching pipes have
been extensively studied by investigators concerned especially in biology. Additionally, a number of works have been
reported in literature concerning oscillatory or pulsatile flows in straight pipes (see for example, Uchida [21], Gerrard and
Hughes [22], Kerczek and Davis [23], Schneck and Ostrach [24], Hino et al. [25], Muto and Nakane [26], Shemer et al. [27],
Elad et al. [28]). Pioneering studies related to dynamic instability of pipes conveying fluctuating fluid were from Chen [29]
followed by Ginsberg [30], Païdoussis [31] and Païdoussis and Issid [32]. Ginsberg [30] derived the general equations of
motion for small transverse displacement of a pipe conveying fluid based on the transverse force exerted by the flowing
fluid. For the case of a simply supported pipe Galerkin method was utilized to obtain the solution. The dynamic instability
regions were evaluated and it was shown that the region of dynamic instability increases with increased amplitude of
fluctuation. Païdoussis [31] presented a theoretical analysis of the dynamical behavior of flexible cylinders in axial flow, the
velocity of which was perturbed harmonically in time. He found that parametric instabilities are possible for certain ranges
of frequencies and amplitudes of the perturbations. These instabilities occur over specific ranges of flow velocities, and in
the case of cantilevered cylinders are associated with only some of the modes of the system. Païdoussis and Issid [32]
derived the equation of motion for a flexible pipe conveying fluid; effects of external pressurization and external tension
were included, the longitudinal acceleration of the fluid was taken into account, hence this model can be applied to pro-
blems when the flow contains harmonic components.

In biomechanics, thin-walled shells can be used to model the mechanics of veins, arteries and pulmonary passages.
Kamm [33] investigated the flutter phenomenon of veins and its associated collapse, while Païdoussis [1] investigated the
fluid–structure interaction between the blood flow and the veins. The mechanisms leading to static collapse and flutter of
biological systems have been explained but there remain questions regarding the causes that may lead to it because of the
large deformations the system experiences. Thus, the dynamics of arteries should be easier to explain since arteries are
traditionally considered capable of withstanding large deformations without adverse effects. In addition, arterial walls are
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