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a b s t r a c t

We show that a mass free to circulate around a shaken pivot point exhibits resonance-like
effects and large amplitude dynamics even though there is no natural frequency in the
system, simply through driving under geometrical constraint. We find that synchroniza-
tion between force and mass occurs over a wide range of forcing amplitudes and fre-
quencies, even when the forcing axis is dynamically, and randomly, changed. Above a
critical driving amplitude the mass will spontaneously rotate, with a fractal boundary
dividing clockwise and anti-clockwise rotations. We show that this has significant
implications for energy harvesting, with large output power over a wide frequency range.
We examine also the effect of driving symmetry on the resultant dynamics, and show that
if the shaking is circular the motion becomes constrained, whereas for anharmonic rec-
tilinear shaking the dynamics may become chaotic, with the system mimicking that of the
kicked rotor.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear oscillators with a characteristic frequency response, such as the canonical example of the damped, driven
nonlinear pendulum, have been central in exploring dynamical effects such as resonance (see e.g. [1]), chaos [2], and fractal
basins of attraction [3]. Somewhat surprisingly, the nature, and even possibility, of similar effects in oscillator systems with
no characteristic frequency have received much less attention. The horizontal pendulum is the paradigmatic example of
such a system, however work has focused primarily on the small amplitude limit, relevant to precision seismometry (see e.g.
[4]). At the other extreme in dynamic response is the kicked rotor [5], well-known for its chaotic dynamics, physically
realized with cold atoms [6] and even using Bose–Einstein condensates [7]. There has however been a recent surge of
interest in rotating masses for energy harvesting [8–11], as these systems do not suffer many of the problems facing
resonant energy harvesters [12,8], although in the context of sea wave energy harvesting, at least, there are a number of
proposals for overcoming these limitations (see e.g. [13]).

Parallel to work on mechanical models there has been significant interest in recent years in the dynamics of particles in
time-dependent external potentials. A primary focus has been on the symmetry-breaking required to observe ratchet-like
energy transport [14], and similar effects have been observed for effective particles (self-localized solitons) in nonlinear
wave systems [15,16]. The horizontally shaken pendulum considered here can be regarded as a particle in a time-dependent
flashing periodic potential, but with only one period, supplemented by periodic boundary conditions. In this context we
identify the conditions for particle motion, and describe the full bifurcation picture of the particle dynamics. Despite an
enormous amount of interest in so-called flashing or pulsating ratchets [17,18], involving for instance a biharmonic time-
varying potential [14], there appears to be no detailed study of the simpler case proposed in this work.

We begin in Section 2 by developing the time-dependent model of our system, including connection to the physical
parameters natural in a horizontally shaken pendulum system. In Section 3 we consider the special case of purely rectilinear

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jsvi

Journal of Sound and Vibration

http://dx.doi.org/10.1016/j.jsv.2016.02.024
0022-460X/& 2016 Elsevier Ltd. All rights reserved.

Journal of Sound and Vibration 371 (2016) 295–304

www.sciencedirect.com/science/journal/0022460X
www.elsevier.com/locate/jsvi
http://dx.doi.org/10.1016/j.jsv.2016.02.024
http://dx.doi.org/10.1016/j.jsv.2016.02.024
http://dx.doi.org/10.1016/j.jsv.2016.02.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2016.02.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2016.02.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2016.02.024&domain=pdf
http://dx.doi.org/10.1016/j.jsv.2016.02.024


harmonic shaking and examine the stability of the fixed points and the periodic families, and uncover a number of bifurcations
which occur as the shaking amplitude is varied. In Section 4 we examine the effects of more general types of driving, such as
anharmonic rectilinear shaking, random changes in shaking direction, and elliptical and circular shaking. In Section 5 we then
look at possible application of this system for energy harvesting, by examining characteristic energy dissipation over a range of
parameter values. Finally in Section 6 we present our conclusions and directions for further work.

2. Model

We consider a mass M attached by a massless rod of length R to a driven pivot point, constrained to lie in the xy plane, as
shown in Fig. 1(a and b). Gravity acts in the z direction, and we assume plays no role in the dynamics. To be consistent with
the standard pendulum literature, we define θ¼ 0 to correspond to the mass on the negative y-axis. The position of the
mass is given by xðtÞ ¼ R sin ðθÞþFxðtÞ and yðtÞ ¼ R cos ðθÞþFyðtÞ, where Fi(t) denotes the pivot motion in the i¼ x; y
directions. There is no potential energy in the system, so the Lagrangian takes the particularly simple form
L¼ T ¼ 1

2M _x2þ _y2
� �

. Including dissipation through a Rayleigh function (see e.g. [1]), we find the following equation of
motion for the dissipative, driven system:

€θþ Γ
MR2

_θþ
€F x

R
cos θ

� �� €F y

R
sin θ
� �¼ 0; (1)

where we have assumed that the damping is occurring at the hub, and captures the effect of energy harvesting mediated by
the coefficient Γ [19]. We will consider the effect of both harmonic and anharmonic shaking, with a focus on the former,
where we assume the following specific forms: FxðtÞ ¼ F cos ðωtÞ cos ðϕÞ, FyðtÞ ¼ F cos ðωtÞ sin ðϕÞ for rectilinear shaking;
and FxðtÞ ¼ Fðf x=ðf xþ f yÞÞ cos ðωtÞ, FyðtÞ ¼ Fðf y=ðf xþ f yÞÞ sin ðωtÞ for elliptical shaking. After rescaling time through t ¼ ~t=ω the
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Fig. 1. (a) Schematic of a horizontally oriented pendulum, consisting of a mass supported by a massless rod, attached to a central rod which is shaken
periodically; (b) top view of the system, showing the coordinate system in use, and the rectilinear shaking of the pivot point at angle ϕ; (c and d) examples
of the dynamics resulting from harmonic shaking in the x-direction only with (c) convergence to a fixed point when f¼0.4 and (d) convergence to a
rotating solution when f¼0.6. In both cases θð0Þ ¼ _θð0Þ ¼ 0 and γ ¼ 0:1. The lines at the bottom (red) show the shaking oscillations for reference. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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