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a b s t r a c t

Structural-acoustic waveguides of two different geometries are considered: a 2-D rec-
tangular and a circular cylindrical geometry. The objective is to obtain asymptotic
expansions of the fluid–structure coupled wavenumbers. The required asymptotic para-
meters are derived in a systematic way, in contrast to the usual intuitive methods used in
such problems. The systematic way involves analyzing the phase change of a wave inci-
dent on a single boundary of the waveguide. Then, the coupled wavenumber expansions
are derived using these asymptotic parameters. The phase change is also used to quali-
tatively demarcate the dispersion diagram as dominantly structure-originated, fluid-
originated or fully coupled. In contrast to intuitively obtained asymptotic parameters, this
approach does not involve any restriction on the material and geometry of the structure.
The derived closed-form solutions are compared with the numerical solutions and a good
match is obtained.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

To understand the fluid–structure interaction in structural-acoustic systems, the analytical treatment of the dispersion
relation is found to be insightful [1,2]. In this regard, asymptotic methods have been used in several studies [3–10] in order
to solve the coupled dispersion relation and understand its dispersion characteristics. In asymptotic methods, a small (or
large) parameter is required to carry out the calculation. And most often, researchers have found the small parameter either
from physical intuition or by trial and error. The obtained expansions work well in certain frequencies and fail to do so at
others. Of course, at the instances where the expansions fail, other expansions can be found. This again depends on
intuition, experience and trial and error.

A typical example is by Sarkar et al. [9] where a fluid-loading parameter μ was introduced for a cylindrical structural-
acoustic waveguide. μ is given by

μ¼ ρFa
ρSh

; (1)

where ρF is the density of the fluid, ρS is the density of the structural material, h is the thickness of the shell and a is shell
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radius. Coupled wavenumber expressions were obtained for μ¼ 0:2, i.e., μ⪡1 and μ¼ 5, i.e., μ⪢1 for the n¼0 mode using the
Donnell–Mushtari (DM) theory. The analysis was done at low and high frequencies. The μ values and the frequency ranges
considered being extreme were convenient for asymptotic analysis. For the same fluid-filled cylindrical shell with steel–
water components, Fuller et al. [11] obtained dispersion characteristics numerically for n¼0 and n¼1. For a steel–water
combination μ¼ 2:56¼Oð1Þ (for h=a¼ 0:05). It was found that the coupled wavenumbers were perturbations to either the
uncoupled rigid-duct modes or uncoupled pressure-release wavenumbers or the in vacuo structural wavenumbers at certain
frequencies. At a value μ¼ 2:56, since perturbed solutions were still obtained, it is not clear whether μ¼ 2:56 is small, large
or neither in terms of being a uniform asymptotic parameter.

Further, the same system as the above was subjected to analytical treatment in Ref. [12] without any restriction on μ and
curves were computed for the particular value μ¼ 2:56 using perturbation methods. The wavenumber expressions were
obtained either away from or in the neighborhood of the in vacuo wavenumbers. The curves were found to be perturbations
to rigid-duct wavenumbers and the in vacuo structural wavenumbers. However, a few dispersion curves did not match with
the numerical solutions (in Figs. 3(b) and 4(b) of Ref. [12]). It turns out that for the same value of μ¼ 2:56, the curves follow
the pressure-release curves for low frequencies and the rigid-duct curves for the high frequencies. Thus, the intuitively used
parameter μ does not across the frequency range remain as an asymptotic parameter.

An alternative approach is to first categorize the wavenumber–frequency space as structure-originated, fluid-originated
or fully coupled (i.e., dominated by both) based on physical arguments. Here it is not the value of a single intuitive parameter
that is in question. Hence, there are no restrictions on physical parameters (such as densities or the material constants). This
approach is applicable for a wide range of thin structures (for example, isotropic or orthotropic) and for an arbitrary μ. This
qualitative approach is then translated into quantitative asymptotic parameters that can be used to derive wavenumber
expansions.

In this paper, initially we consider a 2-D rectangular waveguide with a flexible upper boundary and a lower rigid
boundary. For this system, the wavenumber–frequency space is demarcated into uncoupled, partially coupled or fully
coupled regions by analyzing the phase change of a plane wave incident only on the flexible boundary. The other boundary
is ignored. By doing this, the problem becomes simplified since the cross-sectional modes do not appear in the calculation.
This approach is inspired by the work of Shu and Ginsberg [13]. They used a similar approach, again in a rigid rectangular
waveguide to study the finite-amplitude wave propagation. This analysis results in identifying the appropriate asymptotic
parameters at different frequencies in the wavenumber–frequency space. Following this, using these obtained asymptotic
parameters, the coupled wavenumber expansions are derived. Next, a more complex system, a circular cylindrical wave-
guide is considered and the same analysis is conducted. Asymptotic wavenumber expansions are obtained by choosing
appropriate asymptotic parameters. These parameters (obtained through a systematic procedure) are compared with those
obtained using intuition in Ref. [12] and the corresponding results are discussed.

In Section 2, the 2-D rectangular waveguide is considered and the coupled dispersion relation is derived. Next, in Section
2.1, the effect of the structural boundary is studied by analyzing the phase change it causes on an incident plane wave. Based
on the phase change, the dispersion diagram is categorized into various regions in Section 2.1.2. Next, in Section 2.1.3, the
asymptotic parameters are obtained from the phase change in order to solve the coupled dispersion equation. Using these
asymptotic parameters, the closed-form wavenumber solutions are obtained in Section 2.2. Similarly, in Section 3, an
orthotropic circular cylindrical shell is considered. The dispersion diagram is categorized based on the phase change of an
incident plane wave on the cylindrical structural boundary. Based on the phase change, the asymptotic parameters are
identified and the coupled wavenumber expansions are obtained.

2. Two-dimensional rectangular waveguide

Let us consider a two-dimensional rectangular waveguide with a 1-D elastic plate (along x̂) and a rigid surface as its boundaries
[8], as shown in Fig. 1. Let the uniform width of the cross-section (along ẑ) be a. The acoustic potential ϕ̂ is given by,

ϕ̂ ¼ Âeið� ζ̂ ẑþ κ̂ x̂� ω̂ t̂ Þ þ B̂eiðζ̂ ẑþ κ̂ x̂� ω̂ t̂ Þ; (2)

where κ̂ is the coupled wavenumber in the x̂ direction, ζ̂ is the corresponding wavenumber along ẑ and ω̂ is the frequency. The
structural equation at ẑ ¼ 0 is given by

Eh3

12ð1�ν2Þ
∂4

∂x̂4
þρSh

∂2

∂t̂
2

 !
ŵ ¼ � p̂jẑ ¼ 1; (3)

Fig. 1. A plane wave incident and reflected from the elastic boundary of a 2-D waveguide.
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