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a b s t r a c t

The free, linear, transverse vibrations of a semi-infinite axially moving string are con-
sidered in order to study the reflection of an incident wave and the damping properties of
different types of boundary conditions such as free, fixed, spring–dashpot, and mass–
spring–dashpot. To obtain the response to the initial conditions, the method of d'Alembert
is applied. Furthermore, analytical expressions for the time-rate of change of the total
mechanical energy of the system are derived. The obtained results give insight into the
most efficient way of placing a boundary support depending on the direction of the
transport velocity. Moreover, for nonclassical boundary conditions, the dynamics of the
string is described by the relative values of the system parameters.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the present study, a uniform semi-infinite string with density ρ, which is pulled under constant speed V and tension P
over a smooth support, is considered (see the schematic diagrams in Table 1). In real engineering slender systems, the length
of the string is finite, where the reflections of waves occur at both boundaries. The interaction among the reflected waves
does not allow in a simple way to study the effectiveness of a boundary support as a standalone device, while the semi-
infinite span of the string does. Each time a wave interacts with the boundary, then this simple model for a semi-infinite
string can be used to determine how much energy for that wave is dissipated at that boundary. More precisely, by looking at
the reflected wave profile and the energetics of the model under consideration, one can make a conclusion about the
efficiency of a placed boundary support as a vibration suppressor.

There are a plenty of examples studying the reflection phenomena in stationary strings with classical boundary con-
ditions by the classical d'Alembert solution in the literature (see, for instance, [1,2]). Recently, Akkaya and van Horssen [3]
employed this method to obtain the exact solutions for the semi-infinite stationary string with nonclassical boundary
conditions. Additionally, the authors analyzed reflection and damping properties of the considered boundary conditions.
Apart from these, a lot of research has been done on the dynamic analysis of axially moving strings (see, e.g., the classical
and well-known papers [4–13]). For example, Wickert and Mote [10] derived a classical vibration theory for traveling string
and beam models providing the exact expressions for their responses in closed form. Darmawijoyo and van Horssen [12]
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constructed asymptotic approximations of the solution for an axially moving string with an attached spring–mass–dashpot
system at its end. Chen [13] reviewed research over the last few decades on transverse vibrations of traveling strings and
their control. Moreover, the author suggested future research direction in analysis and control of axially moving strings.
Swope and Ames [14] derived a response for a moving threadline by the methods of d'Alembert and characteristics showing
the importance of the relation between the winding speed and the wave velocity. Tan and Ying [15] used the transfer
function formulation and the wave propagation concept to derive the exact response solution for the translating string with
general boundary conditions. In the case of a dashpot boundary support, they observed complete wave absorption when the
value of damping coefficient equals the propagation speed of the reflected wave. Lee and Mote [16] analyzed the energetics
of translating continua for fixed, free, and damped boundary conditions. One of the main results is the evaluation of the
energy by the reflection coefficients which are defined by the boundary conditions. Chen and Ferguson [17] studied the
energy dissipation by a viscous damper attached at one end of a moving string. The authors could obtain the optimum value
of this damper which dissipates most input energy for a constant as well as for a varying length of the string.

In contrast to previous research for traveling strings defined on a finite domain, our work focuses on reflection and
damping properties of a single boundary of different types. Therefore, we choose a semi-infinite string as a model for
consideration. This paper is organized as follows. Section 2 introduces the equations of motion describing the transverse
vibrations of an axially moving semi-infinite string and different types of boundary conditions. In Section 3, we use the
method of d'Alembert to obtain the response to the initial conditions. Additionally, we analyze the reflections of waves at
different types of boundary supports. Next, Section 4 presents the total energy and its time-rate of change providing more
insight into the stability of the system. Finally, Section 5 emphasizes the advantages of the used method for solution and
summarizes the results obtained in Sections 3 and 4.

2. Equations of motion

The transverse equation of motion of the semi-infinite string can be obtained by the application of Hamilton's principle
(see, for instance, [4,18,19]):

uttþ2VuxtþðV2�c2Þuxx ¼ 0; (1)

where u is the transverse displacement and c¼
ffiffiffiffiffiffiffiffiffi
P=ρ

p
is the wave propagation speed. To avoid the divergence instability [16]

in the string and to have a reflection of the incident wave at the boundary, we assume that the transport speed V is less than
the critical one, i.e., jV joc. To put the governing equation in a non-dimensional form, we incorporate the following

Table 1
List of various boundary conditions. The symbols are defined in the text.

Type Diagram Equation

Fixed uð0; tÞ ¼ 0

Free uxð0; tÞ ¼ 0

Spring–dashpot κuð0; tÞþηut ð0; tÞþPuxð0; tÞ ¼ ρV ½ut ð0; tÞþVuxð0; tÞ�

Mass–spring–dashpot mutt ð0; tÞþκuð0; tÞþηut ð0; tÞ ¼ ρV ½ut ð0; tÞþVuxð0; tÞ��Puxð0; tÞ

N.V. Gaiko, W.T. van Horssen / Journal of Sound and Vibration 370 (2016) 336–350 337



Download English Version:

https://daneshyari.com/en/article/287055

Download Persian Version:

https://daneshyari.com/article/287055

Daneshyari.com

https://daneshyari.com/en/article/287055
https://daneshyari.com/article/287055
https://daneshyari.com

