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a b s t r a c t

This paper proposes a new method for the reconstruction of the blockage area function in
a symmetric duct by resonant frequencies under a given set of end conditions, i.e., open–
open or closed–closed ends. The analysis is based on the explicit determination of quasi-
isospectral ducts, that is duct profiles which have the same spectrum as a given duct with
the exception of a single eigenfrequency which is free to move in a prescribed interval.
The analytical reconstruction was numerically implemented and tested for the detection
of blockages. Numerical results show that the accuracy of identification increases with the
number of eigenfrequencies used and that the reconstruction is rather stable with respect
to the shape, the size and the position of the blockages.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The identification of the cross-sectional area variation induced by the occurrence of blockages in a duct or in a pipe by
using non-intrusive acoustic measurements is an important issue in several contexts. Applications range from detection of
blockages in sodium cooled fast reactors [1] to diagnostic analysis of piped fluid systems. Other research works concern the
use of classical acoustic methods based on impedance testing for the identification of cross-sectional area changes in vocal
tracts or ear canals [2,3], although more efficient approaches have been recently developed for the analysis of these
inherently dissipative systems, see, for example, [4,5]. Among advanced applications in the field, the research developed by
Campbell and co-workers on the use of Acoustic Pulse Reflectometry for determining the internal dimensions of musical
wind instruments [6] and for leak detection in tubular objects [7] should be also mentioned.

A commonly accepted approximation to the wave equation that governs the low-frequency sound propagation in a duct
is Webster's horn equation [8]. The model considers the duct to be a slender hard-walled tube, lossless, and to have a rate of
change of cross sectional area with the distance x along the tract that is sufficiently small, so that the sound pressure can be
approximated by means of a longitudinal sound wave along the x-direction. For a sound pressure pðx; tÞ varying harmo-
nically in time with radian frequency ω, i.e., pðx; tÞ ¼ uðxÞeiωt , where i is the imaginary unit, the spatial propagation of the
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longitudinal acoustic wave of small amplitude u(x) is governed by the Webster horn operator

ðAðxÞu0ðxÞÞ0 þλA xð Þu xð Þ ¼ 0; in 0; Lð Þ; λ¼ω2

c2s
; (1.1)

where A¼ AðxÞ is the cross-sectional area, L is the duct length, cs is the velocity of sound, and the primes denote x-differ-
entiation. We refer to [9] for a rigorous derivation of Webster's horn equation based on the method of slow variation and
ideas of matched asymptotic expansions. The boundary value problem is completed by assigning the conditions at the ends
of the duct, namely the classical limit conditions u0 ¼ 0 for a closed end and u¼0 for an open end; see [9] for a rigorous
asymptotic derivation of the boundary conditions and for a deep analysis of the boundary layer at the ends of slowly varying
ducts. Under given (classical) end conditions at x¼0 and x¼L, there exists a denumerable family of eigenvalues fλmg1m ¼ 1
(and eigenfrequencies, or resonant frequencies, ωm) of Eq. (1.1), which form the spectrum of the duct. The corresponding
non-trivial solutions um to Eq. (1.1) are the normal modes of vibration, or eigenfunctions, of the duct.

An important question is whether the shape A(x) of a blockage perturbed duct can be determined from its resonant
frequencies.

From the mathematical point of view, it has been shown that knowledge of two complete spectra, having specific
asymptotic forms and satisfying specific interlacing conditions, correspondent to two different end conditions of the duct
(i.e., closed–closed and closed–open ends) uniquely determines the cross-sectional area A(x), up to a multiplicative factor,
see [10–12]. Knowledge or measurement of the doubly infinite set of eigenvalues is not realistic, since it is only for low
frequencies that Webster's horn equation properly models the sound propagation in a duct. Therefore, in practical appli-
cations, the attention must be necessarily restricted to a set of lowest-order eigenvalues.

Reconstruction of the cross-sectional area from a finite number of (lower) eigenfrequency data has been carried out in
the literature using perturbation analysis. On assuming that the unknown cross-sectional area A(x) is a smooth perturbation
of the uniform closed–open duct A0 and that the logarithm of the normalized area function variation lnðAðxÞ=A0Þ is band
limited in frequency preserving only 2N cosine Fourier components, e.g., ln A xð Þ=A0

� �¼ P2N
j ¼ 1 aj cos

2jx
L , Mermelstein [3]

proved that the first-order change of the mth eigenfrequency of the closed–open duct and the change of the mth eigen-
frequency of the closed–closed duct determines uniquely the ð2m�1Þth and the 2mth Fourier coefficient of lnðAðxÞ=A0Þ,
respectively.

The perturbation approach proposed by Mermelstein was extended by Wu and Fricke [13] to the detection of blockages
in ducts by eigenfrequency measurements on closed–open and closed–closed end conditions. The identification procedure
by Wu and Fricke was still based on the assumption that the blockages are a perturbation of the original duct, but, different
from previous studies, the identification concerned with less regular cross-sectional coefficients, since the duct profile was
assumed to be a piecewise-constant function. In spite of this weak regularity, the agreement between calculated and actual
blockage area was good when half-wavelength of the eigenfrequency measured is greater than the length of the blockage.

The above reconstruction methods require the knowledge of a set of eigenvalues coming from spectra corresponding to
two different end conditions. The requirement to modify a boundary condition (from closed–open to closed–closed, for
example) in order to obtain information on a second spectrum, could be deemed and could represent a limit for the concrete
application of the identification method. De Salis and Oldham [14] noticed that the completion of the finite Fourier
expansion of lnðAðxÞ=A0Þ is possible by using measurements under a single set of boundary conditions. They observed that
eigenfrequencies for the closed–closed duct coincide with the antiresonant frequencies of the driven frequency response
function measured at the open end of the closed–open duct. Estimate of antiresonant frequencies requires specific
experimental and signal-processing strategies in order to locate the frequency with accuracy. In a subsequent paper, De Salis
and Oldham [15] proposed high noise immunity maximum length sequence techniques to estimate accurately the locations
of the antiresonant frequencies in the measured frequency response, and applied their method to identify blockages in
a duct.

All the available results on the determination of the duct cross-sectional area from eigenfrequency measurements are
founded on the assumption that the unknown cross-sectional area is a small perturbation of the intact (or initial) duct.
However, the smallness of the perturbation is never stated in a quantitative way, i.e., in terms of a suitable norm of the cross-
sectional area change function, and this makes it difficult to determine the error in the reconstruction of the unknown
coefficient. Based on the results by Wu and Fricke [13], for example, the perturbation analysis seems to be valid for blockage
with change of area less than 50 percent of the intact area and blockage length less than L

4. In addition, since the recon-
struction based on finite spectral data is not unique, it is not clear how large is the set of cross-sectional area coefficients A(x)
which share exactly all the first N eigenfrequencies coming from both the spectra under different end conditions. The above
questions have motivated our research, and this paper is a contribution to this inverse problem in acoustics.

In this research we consider the problem of determining the geometry of a duct with blockages from a single spectrum.
In the first part of the paper we show how to explicitly construct the cross-sectional area such that the duct has exactly the
prescribed (measured) values of the first N eigenfrequencies belonging to a single spectrum obtained under either open–
open or closed–closed end conditions. The analysis is developed for a symmetric duct, e.g., a duct with cross-sectional area
AðxÞAC2ð½0; L�Þ such that AðxÞ ¼ AðL�xÞ. In this case, the knowledge of a single full spectrum determines uniquely the shape
profile, up to a multiplicative constant [16]. Our method is based on the determination of the so-called quasi-isospectral
horn operators which have exactly the same spectrum as a given horn, with the exception of a single eigenfrequency which
is free to move in a prescribed interval. The coefficient A(x) and the normal modes can be constructed explicitly by means of
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