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a b s t r a c t

The point group identification (PGI) algorithm is proposed to determine the representa-
tive point sets in response analysis of nonlinear stochastic dynamic systems. The PGI
algorithm is employed to identify point groups and their feature points in an initial point
set by combining subspace clustering analysis and the graph theory. Further, the repre-
sentative point set of the random-variate space is determined according to the minimum
generalized F-discrepancy. The dynamic responses obtained by incorporating the algo-
rithm PGI into the probability density evolution method (PDEM) are compared with those
by the Monte Carlo simulation method. The investigations indicate that the proposed
method can reduce the number of the representative points, lower the generalized F-
discrepancy of the representative point set, and also ensure the accuracy of stochastic
structural dynamic analysis.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic dynamics has gained increasing attention from researchers in many scientific fields. The randomness of
stochastic dynamical systems comes from external excitations as well as structural properties [1]. Structural systems are
generally at nonlinear state when they are subjected to severe external excitations [2]. Due to the coupling of randomness
and nonlinearity, the dynamic response of a stochastic system is a random variable or a random process. The more effective
method is to capture the probabilistic information of structural dynamic responses [3]. The methods of moment and solving
the FPK equation were developed extensively in the field of random vibration. The dynamic responses of a linear stochastic
system can be attained by the moment method [4,5]. But the responses of nonlinear stochastic systems cannot be inves-
tigated conveniently by this approach because of the non-closed problem of the moment equations [5,6]. While the Monte
Carlo simulation is always concerned because of its versatility, it is seldom applied in practical large engineering structures
due to its prohibitive computational burdens. To solve the problem of compound random vibration involving the ran-
domness from structural properties and external excitations, the Monte Carlo simulation and generalized chaos polynomial
method are employed generally [7–9]. Combining the random collocation point method, the investigation of a stochastic
dynamic system can be achieved by using the generalized chaos polynomial method [10,11]. Nevertheless, the number of
the orthogonal points of the polynomial grows exponentially with the increase of the number of random variables. In the
situation, the orthogonal chaos polynomial method is not of acceptable efficiency, namely, it also needs to face the per-
formance impact of the dimensionality curse.
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In the past nearly 10 years, a new approach named the probability density evolution method (PDEM) proposed by Li and
Chen has been developed systematically [12–16]. It could capture the instantaneous probability density function (PDF) of
responses of general nonlinear MDOF structures with the randomness involved in structural properties and external
excitations. In the PDEM, a generalized density evolution equation (GDEE) is derived and can be solved by the numerical
method. The first step to solve the GDEE is the selection of representative point set based on the partition of probability-
assigned space [17]. In the PDEM, a representative point set could be picked out by the Grid-type point method or tangent
sphere method, if the number of random variables is small [18,19]. Otherwise a representative point set could be selected by
using the number theoretical method, quasi-symmetric point method and the crude Monte Carlo [18,20,21]. Because of the
sparsity and symmetry of points selected by the quasi-symmetric point method, the projections of these points on each
dimension of random-variate space overlap each other seriously. Therefore, the information of marginal probability density
of random variables cannot be reflected adequately [22]. In the number theoretical method, the representative points were
selected further by a hyper-sphere. The points inside the hyper-sphere are picked out and the rest are rejected. Although the
number of representative points is reduced effectively, the calculation error increases with the dimensionality of random-
variate space increasing. Although the number of representative points selected by the number theoretic method is far less
than that needed by the stochastic random number method, as presented in [18], it must be large enough to ensure the
computational accuracy of stochastic dynamic analysis.

In the paper, the point group identification (PGI) algorithm is proposed. This algorithm combines the ideas of subspace
clustering techniques, e.g. the technique of clustering in quest (CLIQUE) [23], and the graph theory. Clustering techniques
have been studied extensively in statistics, pattern recognition, bioengineering and data analysis [24–26]. Based on the
subspace clustering techniques and graph theory, this algorithm can identify point groups in the random-variate space and
determine the feature points to constitute the representative point set. Each feature point carries the information of all the
points in an identified point group represented by it. The probability density solutions of the dynamic responses of sto-
chastic structures in which the randomness comes both from structural parameters and external excitation can be attained
by incorporating the PGI algorithm into the PDEM. The efficiency and accuracy of the proposed approach is verified through
the numerical examples.

We first provide a brief review of the PDEM in Section 2 which is the foundation of the algorithm PGI. In Section 3 the
GF-discrepancy is introduced, which is used as a metric of the homogeneity of a point set in the paper. The efficiency of the
algorithm PGI can be verified by the GF-discrepancy. The algorithm PGI is proposed in Section 4. The numerical examples
are adopted to demonstrate the efficiency and accuracy of the algorithm PGI in Section 5. In Section 6 we conclude by
discussing the advantages of the algorithm PGI and an outlook of the further work.

2. Probability density evolution method

Considering a generic stochastic dynamical system, the equation of motion is as follows [27]:

_Y¼ GðΘ;Y; tÞ (1)

where Y¼ ðY1;Y2; :::;YnÞ is a state vector including displacements and velocities of the dynamic system; Y0 is the initial
vector; n is the dimension of the dynamical system; Θ¼ ðΘ1;Θ2; :::;ΘsÞ is an s-dimensional random vector involved with
known joint probability density function pΘðθÞ. Θjðj¼ 1;2; :::; sÞ are random variables representing the randomness either
from excitations or system parameters. In some cases, random excitations or random system parameters are modeled as
random processes, which can be further expressed by a combination of a series of random variables, say through some
decomposition methods of random process, e.g. the Karhunen–Loeve decomposition method [34] and orthogonal decom-
position method [27]. Namely, the random process should firstly be represented by some random variables. Then these
random variables together with other random variables become the components of the random vectorΘ.Θ is still a random
vector consisting of random variables, but the dimensionality of the random vector Θ increases.

If a random-variate space ΩΘ is divided into some non-overlapping partitioning subspace Ωq, q¼ 1;2; :::;npt , and

Pq ¼
Z
Ωq

pΘðθÞdθ (2)

is the assigned probability over Ωq [21]. The advanced probability density evolution equation is proposed [16]:

∂pqðy; tÞ
∂t

þ
Z
Ωq

_Yðθ; tÞ∂pYΘðy;θ; tÞ
∂y

� �
dθ¼ 0 (3)

where pYΘðy;θ; tÞ is the joint probability density function of ðYðtÞ;ΘÞ. It is denoted that:

pqðy; tÞ ¼
Z
Ωq

pYΘðy;θ; tÞdθ; q¼ 1;2;…;npt (4)

where functions pqðy; tÞ, q¼ 1;2; :::;npt , are not probability density functions because
R þ1
�1 pqðy; tÞdy¼ Pqa1. However, after

defining a normalized function ~pqðy; tÞ ¼ pqðy; tÞ=Pq, the consistency condition is satisfied:
R þ1
�1 ~pqðy; tÞdy¼ 1. The function
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