
Critical velocity of a uniformly moving load on a beam
supported by a finite depth foundation

Zuzana Dimitrovová a,b,n

a Departamento de Engenharia Civil, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal
b IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

a r t i c l e i n f o

Article history:
Received 12 March 2015
Received in revised form
23 October 2015
Accepted 7 December 2015
Handling Editor: G. Degrande
Available online 23 December 2015

Keywords:
Transverse vibration
Critical velocity
Active soil depth
Visco-elastic foundation
Hysteretic damping
Moving load

a b s t r a c t

In this paper, a new formula for the critical velocity of a uniformly moving load is derived.
It is assumed that the load is traversing a beam supported by a foundation of a finite
depth. Simplified plane models of the foundation are presented for the analysis of finite
and infinite beams, respectively. Regarding the model for finite beams, only the vertical
dynamic equilibrium is considered. Then the critical velocity obeys the classical formula
with an augmented mass that adds 50% of the foundation mass to the beam mass. In the
model for infinite beams, the effect of shear is added in a simplified form and then the
critical velocity is dependent on the mass ratio defined as the square root of the fraction of
the foundation mass to the beam mass. For a low mass ratio, the critical velocity
approaches the classical formula and for a higher mass ratio, it approaches the velocity of
propagation of shear waves in the foundation. The formula can also account for the effect
of the normal force acting on the beam. Deflection shapes of the beam are obtained semi-
analytically and the influence of different types of damping is discussed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Structures subjected to moving loads have several applications in various areas of transport engineering. The critical
velocity of the moving load stands for an important indication of the viability and safety of the referred structures. For
instance, in the area of high-speed railway transportation, a theoretical concept that is based on the assumption that the
track structure acts as a continuously supported beam resting on a uniform layer of closely spaced, mutually independent,
linear elastic vertical springs, providing resistance in direct proportion to the deflection of the beam and representing the
underlying remainder of the track structure, can be introduced. The stiffness of such spring layer along the length of the
track is named as the track modulus and defines the Winkler model, often referred to as a “one-parameter model”. Then the
critical velocity of the load is defined as the velocity, which in an undamped case induces infinite displacements directed
upward as well as downward. Trains moving with a velocity that is getting close to the critical one, induce excessive
vibrations on the supporting structure, which consequently interacts with the train. This increases supporting structure
deterioration and negatively affects passengers comfort and neighbouring structures. If the critical velocity is reached, more
serious faults can occur, like train derailment, fatigue failure of the rails or power supply disruption [1].
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Since a considerable amount of studies have been published on this subject, only a few pioneering works are mentioned
here. Dynamic stresses in the beam structure were first solved by Krylov [2] and later by Timoshenko [3]. Transverse
vibrations in a simply supported beam traversed by a constant force moving at a constant velocity were presented by Inglish
[4], Lowan [5] and, later on, other solutions have been given by Koloušek [6] and Frýba [7]. In these approaches, the
deflection field is expressed as an infinite sum of normal modes. Each mode contribution can be obtained by methods of
integral transforms [8].

The first solution of a steady-state dynamic response of an infinite beam on an elastic foundation traversed by a moving
load was presented by Timoshenko [9]. The Fourier transform was used for solving the ordinary differential equation. In
[10], the effect of the foundation viscous damping on the response is discussed. The case of a load variable over time is
presented in [11]. An important comparison between finite and infinite beam characteristics is presented in [12]. In [13,14],
the concept of the dynamic stiffness matrix is implemented. Two semi-infinite beams are solved and connected by con-
tinuity equations. Then the critical velocity can be determined as the velocity that ensures the nullity of the determinant of
the dynamic stiffness matrix.

It can be shown that in the steady-state regime, load exerts no inertial effects [7], which is probably the reason why also
the mass inertia of the foundation was overlooked and the formula for the critical velocity of a load traversing an infinite
beam supported by Winkler's foundation was used for many years in railway transportation:
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In Eq. (1), vcr is the critical velocity, E–B designates that Euler–Bernoulli theory is used; k, EI and m stand for the
foundation stiffness (Winkler's constant), bending stiffness and mass per unit length of the beam. Considering the appli-
cation in railway transportation, for a standard 60E1 rail it holds approximately EI¼6.4 MN m2 andm¼60 kg m�1. Values of
k documented in the literature cover an interval from 0.22 MNm�2 to 1000 MNm�2 [13,15], thus the lowest value of the
critical velocity is still above 700 km h�1, which is not what has been observed in reality, especially on soft soils [1,16].

Formula (1) is closely related to finite beams, which is important to mention in view of further derivations. Following
[17], a resonant velocity of a load moving on a finite beam corresponds to the velocity, for which the excitation frequency of
the passing load is equal to the corresponding beam natural frequency. Such a resonant velocity can be attributed to each
vibration mode. The critical velocity is the lowest resonant velocity. For a simply supported Euler–Bernoulli beam of length L
on Winkler's foundation, the resonant velocity is
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and its minimum value is achieved for jcr , that is the closest integer to ~jcr , determined from the stationary condition as
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Then the critical velocity, given by Eq. (2) with jcr substituted, is always higher than the one from Eq. (1) related to
infinite beams. But using the real number ~jcr in Eq. (2), Eq. (1) is confirmed. This method can be extended to other situations.

Several studies have been performed over the years in order to generalise Eq. (1). There are two possible directions of
doing it: by generalisations of the beam and/or of the foundation models. As far as the beam is concerned, by nullity
condition imposed on the determinant of the dynamic stiffness matrix, or by the method described above, the value for the
Timoshenko–Rayleigh (superscript “T–R”) beam can be obtained as [17]:
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where r, A and G stand for the radius of gyration of the beam cross-section, the reduced (by Timoshenko's shear coefficient)
cross-sectional area and the shear modulus of the beam, respectively. In case of railway applications, when the beam is
modelled by the rail, such an extension does not bring much alteration. It can, however, be useful for equivalent beams
formed by the track, ballast and embankment, as in [1,16,18].

Regarding the foundation model, two different directions have been followed. In one of them, the foundation was
replaced by an elastic half-space. In such a model it has been shown that the critical velocity of the moving load corresponds
to the velocity of propagation of Rayleigh waves in the foundation [19]. Experimental evidence of such critical velocity is
reported in [1,16]. In [18,20], it has been concluded that the problem is more complicated, and besides the Rayleigh-wave
velocity, there is a critical velocity resulting from the dynamic interaction between the beam and the elastic half-space.

Another direction related to the foundation model generalisations, suggested improvements of the Winkler model [21]
by introduction of another parameter in so-called Filonenko–Borodich or Pasternak models [22]. This parameter is intro-
duced to account for the coupling effect of the Winkler linear elastic springs, it represents the shear contribution and can
equally be understood as distributed rotational spring. The model is named as a “two-parameter model”. Further, in order to
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