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a b s t r a c t

We consider two pendulum masses attached to the same pivot point and which interact
with each other through Hertzian impacts. We show that this splitting of the mass leads to
an instability in the conservative case, in which initially synchronized large amplitude
motion may evolve into out-of-phase (impacting) motion. We then study in detail the
response of the impacting masses in the presence of damping and driving through hor-
izontal shaking of the pivot point. We find that synchronized modes are usually accom-
panied by small amplitude quasi-periodic, or even chaotic, impacts and a number of
multi-period solutions may appear in the bifurcation diagram. We reveal the existence
and stability of a number of impact modes and scan the frequency response of the system
to a series of initial conditions to identify which modes may be more easily generated in
experiment.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Impact dynamics are of broad interest due to their appearance in a wide range of physical systems [1]. In the context of
engineering applications the examples are numerous and varied, including cases such as percussive drilling [2,3], gear tooth
wear [4], and robotic locomotion [5]. Parallel to the engineering studies there has been significant interest in simpler
physical models to uncover the new effects which emerge due to impact [6]. The appearance of grazing bifurcations was
revealed in a horizontally shaken pendulum with a tilted impact plane (see, e.g. [7]). Newton's cradle continues to be
studied, with dissipation shown to result in marked change from the canonical case [8]. Even the seemingly simple case of
two bouncing balls has revealed that a finite elastic impact response can have a dramatic effect on the resulting dynamics
[9]. In this work we continue this theme and explore the changes which occur when a single horizontally shaken pendulum
mass (see e.g. [10]) is replaced with two masses attached to the same central pivot point (see Fig. 1(a)). In this way we can
explore explicitly the effect of impacts in a simple driven pendulum system.

Pendulum-like configurations with impacts have received a significant amount of attention as they allow identification of
the effects of impact in systems with a relatively small number of degrees of freedom. A widely studied case is that of a
pendulum interacting with an external block placed at some angle (see e.g. [7]). This has recently been extended to the case
of two impacting masses interacting with an external block [11]. We consider a similar configuration, except we take the
two impacting pendulums to be identical, and with no external impacting block. In this way we are able to examine the new
features which emerge relative to a single driven pendulum, when the mass is able to “split” into two. Earlier work has also
considered a similar configuration [12], except this earlier work used a vertical pivot point oscillation (which makes fixed
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points possible) and two point-masses interacting instantaneously through impacts. We consider a more physical scenario,
in which the masses have a finite size and interact through Hertzian restoring forces on impact.

We identify the changes which occur relative to a single pendulum system and reveal some of the modes which appear due
to the impacts. We follow the families of these modes and identify their stability. We show that the presence of impacts leads to
significant complexity in the single-pendulum-like modes, due to the possibility of the two masses undergoing small amplitude
oscillations relative to each other when in contact. We find also modes which have no connection to the single-pendulum case
and which emerge solely due to the increased number of degrees of freedom. Finally we move to a more physical consideration
of the dynamics which may be observed in the system starting from equilibrium and from a static inverted configuration. By
scanning the driving frequency we identify which modes are preferentially excited and we provide some general conclusions
concerning the effect of driving strength and mass size on the dynamics. Overall we find that at low initial energy the systemwill
try to mimic the single-pendulum dynamics, but that at higher initial energy impact modes may spontaneously appear.

The paper proceeds as follows. In Section 2 we present the model of our impact system, including a physical discussion of
the parameters, and then rewrite the system in terms of new coordinates for the centre-of-mass and mass separation. In
Section 3 we present examples of solutions which may be observed in the dynamics, beginning with discussion of the
effects of impacts in the conservative case, and followed by a discussion of first the single pendulum case and then the full
driven impact case. In Section 4 we follow the various modes in the driven impact case and explore in more detail some of
the complexity surrounding the single-pendulum-like dynamics in the presence of impacts. In Section 5 we examine from a
physical perspective the types of solutions which emerge from fixed initial conditions, specifically the cases of “zero” and
“inverted” initial configurations. We consider a variety of cases, including weak and strong forcing, and the case of large,
compliant masses. We finish in Section 6 with our general conclusions.

2. Model

We consider two identical masses of mass M attached to the same pivot point by a rigid rod of length R and mass m. The
masses are constrained to lie in the xy plane, as shown in Fig. 1(a), with acceleration due to gravity g acting in the negative y
direction. To be consistent with the standard pendulum literature, we define θi as the angle of the ith mass relative to the
negative y-axis. The functions of the x and y positions of the ith mass are given by xiðtÞ ¼ R sin θiþF cos ωt and yiðtÞ ¼ R cosθi

respectively, where we assume that the pivot oscillates harmonically about the origin along the x-axis. The masses are free to
interact with each other through elastic impacts. We assume that upon impact the masses are free to deform, and that the
restoring force is purely Hertzian in nature (see for instance [13] for a derivation of the elastic Hertzian contact theory).

We consider the following normalized equation of motion for the angle θi for the ith mass (i¼ 1;2):

€θ iþγ _θ iþ sin ðθiÞ� fω2 cos ðωtÞ cos ðθiÞþcðθw�ðθiþ1�θiÞÞ3=2�cðθw�ðθi�θi�1ÞÞ3=2 ¼ 0: (1)

There is a natural periodicity to the system, such that θNþ1 � θ1þ2π and θ0 � θN�2π which allows us to use Eq. (1) when
N¼2. Parameter γ ¼Γ=ðIω0Þ captures the on-site resistive damping (with physical damping coefficient Γ describing, for
instance, damping at the pivot point), where I¼MR2þmR2=3 is the moment of inertia of a rotating mass and ω0 ¼

ffiffiffiffiffiffiffiffi
g=R

p
is

the natural frequency of a single mass oscillating with small amplitude. The normalized forcing amplitude is given by
f ¼ F=R and time has been normalized using the natural frequency ω0. The normalized driving frequency ω¼ωd=ω0 is the
ratio of the driving frequency ωd to the natural frequency. The angular radius of a mass is given by θw=2 where θw⪡2π such
that contact between neighbours can be assumed, for simplicity, to occur at a point collinear with the centres-of-mass. The
impact coupling coefficient c¼ C=ðIω2

0Þ is large and positive when neighbouring masses are in contact, and zero otherwise.
Note that contact occurs whenever the argument of the coupling term is positive (i.e. whenever the 3/2 power terms are
real). In this way Eq. (1) can continuously model the dynamics both during impact and when the masses are not in contact.
We focus on the case of a hard mass, given by c¼50 000, and can quantify the meaning of this by calculating the impact
depth for masses impacting with velocities v¼ 7vi. By equating kinetic energy with the Hertzian potential we see that the
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Fig. 1. (a) Schematic of two pendulums, interacting through impacts, and driven by a horizontally shaken pivot point. (b) Two examples of modes which
emerge due to the impacts: (i) out-of-phase oscillation/rotation impact mode; (ii) ratchet-like rotation.
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