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a b s t r a c t

We study the low frequency wave propagation behavior of sandwich beams containing
periodically embedded internal resonators. A closed form expression for the propagation
constant is obtained using a phased array approach and verified using finite element
simulations. We show that local resonance and Bragg bandgaps coexist in such a system
and that the width of both bandgaps is a function of resonator parameters as well as their
periodicity. The interaction between the two bandgaps is studied by varying the local
resonance frequency. We find that a single combined bandgap does not exist for this
system and that the Bragg bandgaps transition into sub-wavelength bandgaps when the
local resonance frequency is above their associated classical Bragg frequency.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The creation of wave attenuation frequency bands due to addition of substructures to a host medium was first
demonstrated in the context of acoustic waves by Liu et al. [1]. Various researchers have since studied the attenuation of
acoustic and elastic waves by utilizing such locally resonating elements [2]. The localized resonance of the added sub-
structures causes energy sequestering and prohibits the propagation of incident waves [3]. These local resonance bandgaps
are distinct from those obtained due to multiple scattering and interference effects occurring between periodic elements in
a propagation medium, classically referred to as Bragg bandgaps [4–6]. Due to the nature of the mechanism involved in their
creation, Bragg bandgaps are generated at wavelengths comparable to the spatial scale of the periodicities [5]. Local
resonance bandgaps, on the other hand, are independent of the spatial organization of the resonant substructures and are
solely governed by the unit cell resonance frequency [7].

Recently, researchers have investigated various systems containing periodically placed local resonators and demon-
strated the coexistence of both bandgaps in the same system [8–20]. Still et al. [8] experimentally demonstrated the
existence of hypersonic Bragg as well as local resonance bandgaps in three dimensional colloidal films of nanospheres and
also showed that for a structurally disordered system, the Bragg bandgap disappears while the local resonance bandgap
persists. Croënne et al. [9] reported their coexistence as well as an overlap between the two bandgaps for a 2D crystal of
nylon rods in water. Similarly, Achaoui et al. [10] showed the presence of local resonance bandgaps at low frequencies and
Bragg bandgaps at high frequencies for surface guided waves in a lithium niobate substrate with nickel pillars, while
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Bretagne et al. [11] reported similar results for acoustic wave propagation through a 3D bubble phononic crystal. Kaina et al.
[12], Chen et al. [13], and Yuan et al. [14] have recently reported results demonstrating coupling between the two bandgaps
and creation of a single combined ‘resonant-Bragg’ bandgap extending over a wide frequency range. For flexural wave
propagation, Liu et al. [15] utilized a transfer matrix method to study the effect of various periodicities and their combi-
nation on the bandgap characteristics of a beam. Specifically, for the case of suspended mass periodicity they showed that
local resonance and Bragg bandgaps coexist in the system and also provided a transition criterion for the two bandgaps in
terms of the group velocity gradient. Others have used a similar transfer matrix approach to study different beam structures
with periodically placed resonators [16–18]. Xiao et al. used the plane wave expansion method [19] and a spectral element
formulation [20] to obtain the propagation constant for an Euler–Bernoulli beam with attached local resonators, and
demonstrated a super-wide combined pseudo gap when a resonance gap was nearly coupled with a Bragg bandgap.

The idea of the utilization of space available in thick sandwich cores to accommodate locally resonating elements was
first proposed by Chen et al. [21]. The high stiffness to weight ratio of sandwich structures makes them an ideal solution to
save energy through weight reduction. Consequently, sandwich beams have gradually found increased applications in the
aerospace, marine as well as the automotive sectors [22]. However, a major roadblock to further adoption of composite
sandwich designs is their susceptibility under dynamic loading [23]. Chen et al. [24] demonstrated that embedding reso-
nators inside the sandwich core generates local resonance wave attenuation bandgaps which help improve their dynamic
flexural performance without a significant weight penalty. To analyze the effect of resonators embedded inside the core,
they assumed the resonators to be uniformly distributed over the entire length of the beam using a volume averaging
technique. Doing so allows the description of such a resonator-embedded beam using continuous field variables and the
equations of motion were derived using Hamilton’s principle. However, this model did not account for discrete resonators
inserted in the core with a spatial periodicity and was unable to capture the effect of such a periodicity on the dispersion
behavior of the system.

The motivation for this study is to obtain a more complete understanding of the effect of periodically inserted resonators
on the wave propagation behavior of sandwich beams. We adopt the phased array method to obtain the propagation
constants for a sandwich beam with resonator embedded core. The phased array method was developed by Mead [25] to
obtain closed form solutions for the propagation constants of various periodic systems. Since we are primarily interested in
the low frequency behavior of the system, we model the sandwich beam as an equivalent Timoshenko beam [21,26] and
treat the resonators as a phased array of forces. Though the presence of damping has been shown to alter the bandgap
widths [2], here we assume an idealized system and ignore any possible damping effects. Dispersion curves obtained by this
method are compared with volume averaging method and finite element results and it is shown that local resonance and
Bragg bandgaps coexist. The relationship between bandgap bounding frequencies, resonator stiffness and mass, and the
periodic distance is analyzed in the context of modal frequencies of simple unit cell models [6]. Finally, the interaction
between local resonance and Bragg bandgaps is studied and the possibility of creating a single combined bandgap is
considered.

2. Method

The conventional sandwich construction involves bonding two thin facesheets on either side of a thicker, lightweight
core material. Typically, facesheets provide the bending rigidity while the shear stiffness is provided by the core.

Fig. 1. (a) Schematic of a sandwich beam with internal resonators; (b) unit cell showing the relevant geometrical and material parameters of individual
components; and (c) equivalent unit cell modeled as a Timoshenko beam with attached resonators. The equivalent bending rigidity EI, shear rigidity GA,
mass per unit length ρA, and rotary inertia ρI are calculated using Eqs. (1)–(4).
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