

Contents lists available at ScienceDirect

Journal of Sound and Vibration

journal homepage: www.elsevier.com/locate/jsvi

Experimental validation of theoretical methods to estimate the energy radiated by elastic waves during an impact

Maxime Farin ^{a,*}, Anne Mangeney ^{a,b}, Julien de Rosny ^c, Renaud Toussaint ^d, Jacques Sainte-Marie ^b, Nikolaï M. Shapiro ^a

- ^a Institut de Physique du Globe de Paris, Sorbonne Paris Cité, CNRS (UMR 7154), France
- ^b ANGE team, CEREMA, Inria, Lab. J.-L. Lions, CNRS, France
- ^c ESPCI, Institut Langevin, CNRS, 1 rue Jussieu, 75005, Paris, France
- d Institut de Physique du Globe de Strasbourg, Université de Strasbourg/EOST, CNRS, 5 rue Descartes, F-67084 Strasbourg Cedex, France

ARTICLE INFO

Article history: Received 16 December 2014 Received in revised form 29 September 2015 Accepted 1 October 2015 Handling Editor: I. Lopez Arteaga Available online 4 November 2015

ABSTRACT

Estimating the energy lost in elastic waves during an impact is an important problem in seismology and in industry. We propose three complementary methods to estimate the elastic energy radiated by bead impacts on thin plates and thick blocks from the generated vibration. The first two methods are based on the direct wave front and are shown to be equivalent. The third method makes use of the diffuse regime. These methods are tested for laboratory experiments of impacts and are shown to give the same results, with error bars of 40 percent and 300 percent for impacts on a smooth plate and on a rough block, respectively. We show that these methods are relevant to establish the energy budget of an impact. On plates of glass and PMMA, the radiated elastic energy increases from 2 percent to almost 100 percent of the total energy lost as the bead diameter approaches the plate thickness. The rest of the lost energy is dissipated by viscoelasticity. For beads larger than the plate thickness, plastic deformation occurs and reduces the amount of energy radiated in the form of elastic waves. On a concrete block, the energy dissipation during the impact is principally inelastic because only 0.2-2 percent of the energy lost by the bead is transported by elastic waves. The radiated elastic energy estimated with the presented methods is quantitatively validated by Hertz's model of elastic impact.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The quantification of the energy emitted by a source in the form of elastic waves is a common problem in various fields such as vibroacoustics or shielding. In seismology, the problem was confronted long ago [1] and many approaches have since been developed to estimate the energy of natural sources such as earthquakes (see [2–5]), tremors [6], landslides and rockfalls (e.g. [7–11]). In the literature, the power spectral density (PSD) of the emitted signal is often measured to quantify the relative energy of different acoustic sources located at the same distance from the sensor and to compare their frequency content. For example, the temporal evolution of the PSD can provide information on river discharge and on the grain size of the bed load (e.g. [12]). The PSD can also be used to characterize crack formation in brittle [13,14] or granular materials (see [15], for review) and other crackling or crumpling processes (e.g. [16,17]). Finally, acoustic measurements can

^{*} Corresponding author. Tel.: +33 1 83 95 77 82. E-mail address: farin@ipgp.fr (M. Farin).

```
normalized vector of direction i
Nomenclature
                                                                           u_i, v_i, a_i surface displacement, speed and acceleration
                                                                                      in the direction \overrightarrow{u_i} (m; m s<sup>-1</sup>; m s<sup>-2</sup>)
           bending stiffness (I)
                                                                           \tilde{U}_i, \tilde{V}_i, \tilde{A}_i time Fourier transform of u_i, v_i and a_i,
c_P, c_S, c_R longitudinal, shear and Rayleigh wave speeds
                                                                                      respectively (m s; m; m s^{-1})
           (m s^{-1})
                                                                                      group and phase velocities (m s<sup>-1</sup>)
           coefficient of restitution (-)
                                                                           v_g, v_\phi
е
                                                                                      speed of a bead before impact (m s^{-1})
e_{\text{tot}}, e_c, e_pbulk densities of total, kinetic and potential
                                                                           V_z
                                                                                     radiated energy and theoretical radiated
           energies (J m<sup>-3</sup>)
                                                                                      energy (J)
\tilde{e}_{tot}, \tilde{e}_c, \tilde{e}_p time Fourier transform of e_{tot}, e_c, e_p
                                                                                      coordinates in the
                                                                                                                    Cartesian reference
                                                                          x, y, z
           respectively (I m<sup>-2</sup>)
                                                                                      frame (m)
           Young's modulus (Pa)
                                                                                      parameters involved in energy calculations
E_c, \Delta E_c
           energy of the impact and energy lost during
                                                                          \beta, \xi
                                                                                      attenuation coefficient of energy with distance
           the impact (I)
                                                                                      (m^{-1})
E_{\rm tot}(t)
           total elastic energy radiated within the struc-
                                                                                      Lamé coefficients
                                                                                                                of
                                                                                                                      compression
           ture at time t (J)
           frequency (s^{-1})^{n}
                                                                                      shear (Pa)
f trequency (s) \tilde{G}_{zz}^{P}, \tilde{G}_{zz}^{S}, \tilde{G}_{zz}^{R} vertical Green's functions associated with
                                                                                      Poisson's coefficient (-)
                                                                           \pi_P, \pi_S, \pi_R energy partitions among P, SV and Rayleigh
           compressional, shear and Rayleigh waves
                                                                                      waves (-)
           (kg^{-1} s^2)
                                                                           \pi_{P}^{\text{surf}}, \pi_{S}^{\text{surf}}, \pi_{R}^{\text{surf}} surface energy partitions among com-
h
           plate thickness (m)
           wavenumber (m^{-1})
                                                                                      pressional, shear and Rayleigh waves (-)
k
                                                                                      energy density flux (I m^{-1} s)
                                                                          \tilde{\Pi}
L. S. V
           length (m), surface area (m<sup>2</sup>) and volume (m<sup>3</sup>)
                                                                                      density (kg m<sup>3</sup>)
m
           bead mass (kg)
                                                                                      characteristic time of energy attenuation (s)
           coordinates in the cylindrical reference
r, \theta, z
                                                                                      viscoelastic coefficients of compression and
           frame (m)
                                                                          χ, η
                                                                                      shear (Pa s)
S_{ii}
           strain tensor (-)
                                                                                      angular frequency (s^{-1})
           time (s)
                                                                          (i)
t
T_{ij}
           stress tensor (Pa)
```

be useful in industry for particle sizing in powder transport and in particle streams (e.g. [18,19]). However, the PSD does not provide an absolute estimate of the elastic energy radiated by the source because it depends on the distance of measurement.

There are three main approaches to determine the absolute radiated elastic energy from acoustic emissions. The first method consists in computing the energy flux crossing a surface surrounding the source. The integration of the energy flux over this surface gives the radiated power. This technique is applied in seismology to estimate the energy radiated in elastic waves during earthquakes (e.g. [5,20]) and rockfalls (e.g. [8–10]).

The second technique to deduce the radiated elastic energy is based on the estimation of the time dependence of the source force. Miller and Pursey [21] and Goyder and White [22] thus estimated the power radiated in an elastic half-space and in an infinite plate, respectively, by a monochromatic harmonic force. In most cases, the force profile is generally unknown but it can be retrieved from the deconvolution of the displacement field with Green's function tensor [3].

These two first methods can however be performed only when the emitted wave front is not mixed with its reflections off the boundaries of the elastic solid. If multiple side reflections occur, the transported energy becomes homogeneously distributed within the elastic solid and decreases exponentially with time due to viscoelastic dissipation. This situation is commonly referred to as a diffuse field in the literature (see [23–25]). A third energy estimation method, called the diffuse method hereafter, thus consists in extrapolating the radiated energy at the instant of the source from the exponential decrease of the signal coda (see e.g. [25,26], and references therein).

The energy flux, deconvolution and diffuse field methods to estimate the energy lost in elastic waves are used separately by different communities and are based on different assumptions. The first two methods require a sufficiently large elastic solid so that the direct wave front can be clearly distinguished from its reflections off the lateral sides of the elastic solid. On the contrary, with the diffuse method, the elastic solid must be small enough so that multiple side reflections occur. To our knowledge, no study has ever compared these three methods in cases where all three can be applied.

The complex seismic signals generated by rockfalls, bed load transport in rivers and granular flows are partially composed of waves generated by the collisions of individual impactors (gravels, boulders, etc.). Therefore, if we hope to understand these signals, we must first understand the energy budget of individual impacts. The energy that is not radiated in elastic waves during an impact is lost by plastic deformation i.e., not reversible, of the impactor or of the surface [27], by local viscoelastic dissipation around the contact [28] and by conversion into other degrees of freedom of the impactor's motion, such as rotation and other displacement modes. Because of the significant differences between the conditions of each impact on the field, it is however not clear how the energy budget of the impactor depends on its size and speed.

Download English Version:

https://daneshyari.com/en/article/287140

Download Persian Version:

https://daneshyari.com/article/287140

<u>Daneshyari.com</u>