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a b s t r a c t

The propagation of sound is considered in an axisymmetric mean flow, with uniform axial
velocity and non-uniform swirl, with angular velocity proportional to the radius. Two sim-
plifications are made: (i) that the maximum tangential velocity of the mean flow is small
compared to the sound speed; (ii) that the Doppler shift due to rotation is much smaller than
the wave frequency (including Doppler shift by the uniform axial flow) divided by the max-
imum angular velocity of swirl. It is shown that these conditions are not too restrictive for
practical swirling flows in exhaust nozzles, and that they allow the solution of the wave
equation in terms of confluent hypergeometric functions (instead of Bessel functions in the
case of rigid body rotation). This type of radial dependence allows for propagating waves with
decaying amplitude in the case of ‘slow’ swirl, and for evanescent and unstable modes in the
case of ‘fast’ swirl. The borderline between ‘slow’ and ‘fast’ swirl is given by a rotation para-
meter related to the second approximation (ii) above, and defined as the ratio of the Doppler
shift due to rotation to the product of the frequency by the radial compactness.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Swirling flows occur downstream of turbines and in the exhausts of jet engines and other turbomachinery [1–3]. Vor-
ticity modes exist in an incompressible swirling flow [4,5] and couple to sound in the compressible case [6]. The simplest
case is uniform or rigid body rotation [7], for which cut-off modes appear. The case of non-uniform rotation, with angular
velocity decreasing with radial distance as a potential vortex, has been considered [8], including also the presence of
uniform axial flow [9]. The present paper also includes uniform axial flow but considers non-uniform rotation, with angular
velocity increasing proportionally to the radial distance.

The starting point is the acoustic wave equation in an axisymmetric mean flow, with arbitrary dependence on the radius
of the axial velocity (shear flow) and angular velocity (swirling flow) [10]. The wave equation is simplified by the
assumption (Section 2.1) of low Mach number shear and swirl, which in the case of uniform axial flow simplifies to the
assumption of mean flow tangential velocity which is small compared to the sound of speed. The case of uniform or rigid
body rotation is considered first (Section 2.1) to obtain the cut-off frequencies; the solution in terms of Bessel functions for
rigid body rotation is replaced by a solution (Section 4.1) in terms of confluent hypergeometric functions, in the case of
uniform rotation with angular velocity proportional to the radius.

The latter solution is obtained under a second assumption (Section 3.1): that the Doppler shift due to the rotation is small
relative to the wave frequency (including Doppler shift due to the axial flow). It can be shown that the two assumptions are
not too restrictive as regards typical jet engine cylindrical nozzles (Section 4.2), and they allow for the existence of
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(a) attenuated propagating waves for slow rotation and (b) monotonic evanescent and unstable modes for fast rotation
(Section 3.2). The plots for typical exhaust nozzle conditions concern (Section 5.1) the amplitudes and phases of propagating
modes for slow rotation (Figs. 1 and 2), and (Section 5.2) the waveforms of evanescent and unstable modes for fast rotation
(Figs. 3 and 4). The borderline between the cases of slow and fast rotation is azimuthal wavenumber m times maximum
angular velocity (at the wall) Ω0 equal mΩ0 ¼ω

, to the wave frequency ω with Doppler shift by the axial uniform flow
ω
, ¼ ω�kU: Thus unstable modes occur for higher azimuthal order, faster rotation velocity and lower wave frequency
(including Doppler shift by the axial mean flow).

There are other instances of the appearance of confluent or Gaussian hypergeometric functions in acoustic and related
problems some of which are mentioned next. The first is quasi-one-dimensional sound propagation in an exponential
nozzle containing a low Mach number mean flow whose velocity varies inversely with the cross-section to conserve the
mass flux [11]. A second is the solution of the Tchapligyn equation [12] for the potential plane steady flow [13,14]. A third
concerns acoustic-gravity waves in an atmosphere with an exponential temperature profile [15]. A fourth is vertical
acoustic-gravity waves in an atmosphere in the presence of viscosity [16,17]. A fifth is non-dissipative magnetosonic gravity
waves in an isothermal atmosphere in the presence of a uniform horizontal magnetic field [18,19]. A sixth is the propagation
of Alfvén waves as transverse perturbations along magnetic field lines in an isothermal atmosphere in the presence of shear
viscosity [20] or Ohmic resistivity [21] or both [22–24]. A seventh is Alfvén waves in an atmosphere with a non-uniform
temperature [25]. An eighth magnetosonic waves in an atmosphere under a non-uniform magnetic field [26]. Several of the
preceding cases are instances of the solution of a linear differential equation of any order whose coefficients are linear
functions of an exponential in terms of confluent, Gaussian or generalized hypergeometric functions [27,28]. Historically or
chronologically one of the first instances of the use of this property was the solution of the Rayleigh equation specifying the
stability of an inviscid shear flow in the case of an exponential velocity profile [29,30].

2. Cylindrical nozzle with sheared and swirling mean flow

The acoustic wave equation in an axisymmetric mean flow with low Mach number shear and swirl (Section 2.1) is used
to investigate the cut-off properties of sound in the simplest case of uniform axial flow and rigid body rotation (Section 2.2),
before proceeding to cases (Sections 3–4) with non-uniform swirl.
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Fig. 1. The waveforms of radial modes are specified by a Bessel function (Eq. (10a)) in the range (Eq. (32b)) in the absence of rotation a¼0 in Eq. (17a), for
the azimuthal orders (Eq. (34a)).
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