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velocity of vorticity perturbations in the gap between the cylinder and the container is
assumed to be finite. This means that the acceleration of the liquid is characterized by not
only the viscosity but also by a relaxation time constant. The propagation velocity of
elastic torsional waves in the rod is assumed to be finite. The equations that describe the
motion of such a complicated compound system are linear and have been solved in closed
form. The solution shows that there is a considerable deviation between the exact solution
and the simple quasi-steady solution. The most remarkable conclusion is that the classical
quasi-steady solution for very weak damping is incompatible with the general solution.
Propagation of elastic waves in the suspension rod and propagation of vorticity waves in
the liquid have a great influence on the rotational motion of the pendulum. The purpose of
this study is to formulate the criteria that make the classical quasi-steady analysis valid.
The derived solution permits also measurement of viscosity and a conceivable relaxation
coefficient of the liquid as well.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of non-steady rotational motion of a cylindrical torsion pendulum immersed in a cylindrical container, filled
with an incompressible Newtonian liquid, and suspended by an elastic rod (or wire) has been outlined by Jones and Walters
[4] and analyzed by Rehbinder and Apazidis [6]. These analyses are extensions of the simple quasi steady solution, presented
in most textbooks on fluid mechanics. A remarkable property of the well-known quasi-steady solution is that it is
incompatible with the more general one mentioned above if the damping is very weak. This fact seemed to have escaped
the community of mechanics, a fact that is strange since the formation of Stokesian boundary layers is well known. If the
damping is very weak, most of the liquid which is in the gap between the pendulum and the container is practically
stagnant. Only a thin layer adjacent to the pendulum is moving. The extended nonsteady analysis is linear, implying that a
solution is obtainable.

A torsion pendulum, which is damped by a viscous liquid, is often used for measurement of viscosity of the liquid. The
evaluation of such measurements is usually based on quasi-steady theory. A device for this purpose is called a rotary
viscometer and is described in elementary textbooks on fluid mechanics for engineering students, notably by Massey [5].
The evaluation of such a test can be founded on the solutions for free or forced oscillations. In the former case, the frequency
and the logarithmic decrement are measured. The measurement is particularly simple if the damping is very weak. In the
latter case, which is experimentally more attractive, the measurement is simple since it is only necessary to measure the
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List of symbols Aeri critical damping coefficient for quasi-steady
flow

Cr speed of torsional waves in the rod p damping coefficient

Gr shear strength of the rod £ relaxation time

k torsional rigidity of the rod ¢ dimensionless axial coordinate in the rod

] moment of inertia of the pendulum 0 torsional displacement of the pendulum

I depth of the liquid in the container 3 tangential displacement of the rod

LI lengths of the pendulum and the rod K auxiliary function

M,M,  masses of the pendulum and the rod u viscosity of the liquid

1.9 auxiliary variables & dimensionless radial coordinate in the liquid

r radial coordinate psPp-py densities of the liquid, the pendulum and

s variable in the complex plane the rod

Sm poles in the complex plane c tangential stress in the liquid

t time T dimensionless time

T torque acting at the pendulum Y,¥  auxiliary functions

u tangential velocity of the liquid @o inverse characteristic time

z axial coordinate in the rod @ imposed frequency

a damping coefficient Q auxiliary function

phase shift and the damping of the oscillations. These methods presuppose that theory of the flow in the liquid is correct. If
it is incorrect, viz. quasi-steady, the interpretation of experimental measurements for determination of viscosity becomes
incorrect. This risk is particularly big if the damping is weak. For this reason the quasi-steady theory must be replaced by a
non-steady theory.

Rehbinder and Apazidis [6] has pointed out two further linear phenomena that would be possible to include in the
analysis. The two new phenomena to be considered are wave propagations.

The first wave phenomenon is propagation of radial vorticity waves in the liquid between the pendulum and the
container, due to relaxation between the components of the stress tensor and the components of the rate-of-strain tensor. If
the viscosity properties of a liquid are characterized not only by the ordinary viscosity coefficient but also by a relaxation
time, Navier-Stoke's equation is not parabolic but hyperbolic. This means that vorticity waves with finite velocity will
propagate in the liquid, although the damping is very strong. Such imagined waves are neglected for normal liquids. If an
additive is solved in water, the properties of the mixture might be dramatically changed. Long chain polymers added to
water may reduce or even remove turbulence. In an analogous way, it is conceivable that the propagation velocity of
vorticity is finite, in the sense that it might be possible to measure it. In any case, measurement of a possible relaxation time
cannot be evaluated unless a more general solution is available.

This kind of a relaxation time in a constitutive equation can be found in the theory of creep flow of an incompressible
viscid liquid through a porous body with storativity. Normally it is assumed that the flux per unit area is proportional to
pressure gradient. This assumption is called Darcy's law. Muscat [2] and Polubarinova-Kochina [1] have discussed the
influence of a possible relaxation time in their celebrated textbooks, but concluded that the damping is so strong that no
relaxation effect has to be considered. Pascal [3] has derived the solution of the 1D flow equation for a liquid that flows
through a porous body including inertia relaxation. Introduction of a relaxation coefficient in Darcy's law is meaningful in
the sense that it can be experimentally determined with fairly simple means, as Rehbinder [7] and [8] has shown. A 2D
solution, corresponding to the draw down around a well in a confined aquifer has been derived by Léfqvist and Rehbinder
[9]. The similarity between the propagation of water pressure in a liquid in a porous medium and the propagation of
vorticity in a liquid described in this paper is striking. Another analogy is propagation of “heat waves” in a heat conducting
body. It is discussed in chapter 6 in the comprehensive book by Morse and Feshback [10].

The second wave phenomenon that might have influence on the rotary motion of the pendulum is vertical propagation
of linear shear waves in the suspension rod. The two suggested wave phenomena might interact. A possible relaxation time
for vorticity waves in the liquid might be mixed up with the time constant of shear waves in the rod. This means that the
present analysis is necessary, but by no means sufficient, for evaluation of viscosity tests with a rotary viscometer.

The purpose of this paper is to solve the coupled linear system of two partial differential equations and one ordinary
differential equation together with appropriate boundary conditions. The three equations describe the coupled phenomena
discussed above. The general solution can be used for evaluation of the viscosity properties of a liquid in a conventional
rotary viscometer. The solution is necessary if the propagation velocity of vorticity is finite. Moreover, the purpose is to show
the influence of shear waves in the suspension device. Finally the purpose is to show how the general solution degenerates
into the well-known special cases. The background of the problem is presented in the paper by Rehbinder and Apazidis [6]
and the reader is referred to this.

The present paper is organized in the following way. In the second section, the basic equations are presented. In the third
section, the general problem, including appropriate boundary and initial conditions and the solution for free oscillations are
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