

Contents lists available at ScienceDirect

Journal of Sound and Vibration

journal homepage: www.elsevier.com/locate/jsvi

Experimental and analytical study of secondary path variations in active engine mounts

Fabian Hausberg ^{a,c}, Christian Scheiblegger ^{b,d}, Peter Pfeffer ^b, Manfred Plöchl ^{c,*}, Simon Hecker ^e, Markus Rupp ^f

- ^a Audi AG, I/EF-35, Engine/Gearbox Mountings, 85045 Ingolstadt, Germany
- ^b Munich University of Applied Sciences, Department of Mechanical, Automotive and Aeronautical Engineering, Lothstr. 64, 80335 München, Germany
- ^c TU Wien, Institute of Mechanics and Mechatronics, Getreidemarkt 9, 1060 Wien, Austria
- ^d University of Bath, Department of Mechanical Engineering, Bath BA2 7AY, United Kingdom
- e Munich University of Applied Sciences, Department of Electrical Engineering and Information Technology, Lothstr. 64, 80335 München, Germany
- f TU Wien, Institute of Telecommunications, Gusshausstr. 25, 1040 Wien, Austria

ARTICLE INFO

Article history: Received 18 April 2014 Received in revised form 10 November 2014 Accepted 17 November 2014 Handling Editor: J. Lam Available online 17 December 2014

ABSTRACT

Active engine mounts (AEMs) provide an effective solution to further improve the acoustic and vibrational comfort of passenger cars. Typically, adaptive feedforward control algorithms, e.g., the filtered-x-least-mean-squares (FxLMS) algorithm, are applied to cancel disturbing engine vibrations. These algorithms require an accurate estimate of the AEM active dynamic characteristics, also known as the secondary path, in order to guarantee control performance and stability. This paper focuses on the experimental and theoretical study of secondary path variations in AEMs. The impact of three major influences, namely nonlinearity, change of preload and component temperature, on the AEM active dynamic characteristics is experimentally analyzed. The obtained test results are theoretically investigated with a linear AEM model which incorporates an appropriate description for elastomeric components. A special experimental set-up extends the model validation of the active dynamic characteristics to higher frequencies up to 400 Hz. The theoretical and experimental results show that significant secondary path variations are merely observed in the frequency range of the AEM actuator's resonance frequency. These variations mainly result from the change of the component temperature. As the stability of the algorithm is primarily affected by the actuator's resonance frequency, the findings of this paper facilitate the design of AEMs with simpler adaptive feedforward algorithms. From a practical point of view it may further be concluded that algorithmic countermeasures against instability are only necessary in the frequency range of the AEM actuator's resonance frequency.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the higher demand for fuel economy and legal restrictions to reduce emissions, an increased use of modern engine-concepts, e.g., cylinder-on-demand (COD), downsizing, turbochargers, can be observed in today's vehicles. However, in combination with lightweight car bodies, it becomes an increasingly challenging task to satisfy the noise, vibration and harshness (NVH)

^{*} Corresponding author at: TU Wien, Institute of Mechanics and Mechatronics, Getreidemarkt 9, 1060 Wien, Austria. Tel.: +43 (1) 58801 325125. E-mail address: manfred.ploechl@tuwien.ac.at (M. Plöchl).

Nomeno	clature	r	engine order (dimensionless)
	2	R	moving coil resistance (Ω)
A_A	decoupler area (m²)	S	Laplace variable (dimensionless)
A_B	equivalent bulking area (m ²)	s(n)	impulse response of $S(z)$ (dimensionless)
A_K	cross-sectional area of fluid channel (m ²)	$\hat{s}(n)$	impulse response of $\hat{S}(z)$ (dimensionless)
A_S	secondary path amplitude (dimensionless)	$S_{p,1}, S_{p,2},$	$s_{p,3}$ poles of
A_T	equivalent piston area of main rubber spring		$P_{xx}(s), P_{yx}(s), S_x(s), S_y(s)$ (dimensionless)
	(m^2)	$S_{yx,1}$, $S_{yx,1}$	$_{2}, s_{x,1}, s_{y,1}$ zeros of
В	magnetic field strength (T)	C()	$P_{xx}(s), P_{yx}(s), S_x(s), S_y(s)$ (dimensionless)
c_1, c_2	stiffness coefficients of elastomer model (N/m)	S(z)	secondary path (dimensionless)
c_A	actuator stiffness (N/m)	$S_{x}(s)$	active dynamic AEM characteristics
$c_{B,\mathrm{dyn}}, C_{B,\mathrm{dyn}}$	B,dyn(s) dynamic stiffness of main rubber bulk-	C (-)	$F_X(s)/U(s)$ (N/V)
	ing properties (N/m)	$S_{y}(s)$	active dynamic AEM characteristics
$c_{B,1}, c_{B,2}$	main rubber spring bulge stiffness 1 and 2	Ĉ(~)	$F_y(s)/U(s)$ (N/V)
	(N/m)	$\hat{S}(z)$	secondary path estimate (dimensionless)
$c_{T,\mathrm{dyn}}$,	$C_{T,\mathrm{dyn}}(s)$ dynamic stiffness of main rubber	t T	continuous time (s)
	spring (N/m)		sample time (s)
$c_{T,1}, c_{T,2}$	main rubber spring stiffness 1 and 2 (N/m)	u(n)	control output of adaptive filter (dimensionless)
$C_{A,dyn}(s)$	actuator transfer function (N/m)	11/(m)	control output of adaptive filter filtered by
	fluid channel transfer function (N/m)	u'(n)	secondary path dynamics (dimensionless)
d_1, d_2	stiffness coefficients of elastomer model	11(t) 11(c	s) voltage (V)
ı	(N s/m)		U_L induced, resistance, inductance voltage (V)
d_A	actuator damping (N s/m)	$v_{\rm ind}, v_{\rm R}, v_{\rm R}$	engine vibration (dimensionless)
$u_{B,1}, u_{B,2}$	main rubber spring bulge damping 1 and 2	v(n) $w(n)$	complex filter weight (dimensionless)
d	(N s/m)	` '	(s) displacement of actuator mass (m)
d_K	damping coefficient induced by loss of fluid		displacement of elastomer model at engine
d	flow along inertia track (N s/m) quadratic damping coefficient induced by loss	$\Lambda(t), \Lambda(s)$	side (m)
$d_{K,\mathrm{quad}}$	of fluid flow along inertia track (N s ² /m ²)	$\chi_{\rm p}(t) X_{\rm p}$	(s) displacement of upper fluid chamber bulk-
d d	main rubber spring damping 1 and 2 (N s/m)	<i>N</i> _D (<i>v</i>), <i>N</i> _D	ing area (m)
$d_{T,1}, u_{T,2}$ d(n)	chassis vibration (dimensionless)	$\chi_{\nu}(t) X_{\nu}$	(s) displacement of fluid in inertia track (m)
e(n)	error signal (dimensionless)		(s) displacement of AEM at engine side (m)
` '	$f_1(s), f_2(t), F_2(s)$ internal forces of elastomer	$\chi(n)$	complex reference signal (dimensionless)
J 1(t), 1	model (N)	$\chi'(n)$	complex reference signal filtered by secondary
$f_{\bullet}(t) F_{\bullet}(t)$	(s) actuator force (N)	()	path estimate (dimensionless)
	s) transmitted force to the engine (N)	y(t), Y(s)	displacement of AEM at chassis side (m)
	s) transmitted force to the chassis (N)	Z	variable of z transform
i(t)	current (A)	z(t), Z(s)	internal displacement of elastomer model (m)
i	complex unit $j = \sqrt{-1}$	φ_{S}	secondary path phase angle (deg)
k_M	voice coil constant (kg m/A s ²)	$\kappa_{B,\mathrm{dyn}}$	volumetric compliance of upper fluid chamber
l	coil length (m)	,	(m^5/N)
l_K	length of fluid channel (m)	μ	adaptation step-size
Ĺ	moving coil inductance (H)	$ ho_f$	Fluid density (kg/m³)
m_A	actuator mass (kg)	ω	engine speed (rad/s)
m_K	fluid mass of inertia track (kg)	AEM	active engine mount
n	sample number (dimensionless)	COD	cylinder on demand
<i>p</i> (<i>n</i>)	impulse response of $P(z)$ (dimensionless)	FIR	finite impulse response
$p_i(t)$	pressure inside upper fluid chamber (N/m²)	FxLMS	filtered-x least mean squares
P(z)	primary path (dimensionless)	HEM	hydraulic engine mount
$P_{xx}(s)$	passive dynamic AEM characteristics	LMS	least mean squares
	$F_{x}(s)/X_{T}(s)$ (N/m)	NVH	noise, vibration and harshness
$P_{yx}(s)$	passive dynamic AEM characteristics	SISO	single input single output
	$F_y(s)/X_T(s)$ (N/m)		

demands of the customer. While passive engine mounts reach their technical limits in solving this task, active engine mounts (AEMs) provide an effective contribution to further improve the acoustic and vibrational comfort of passenger cars.

Several concepts for AEMs have been proposed in the past [1-13]. They have all in common that a conventional passive hydraulic engine mount (HEM) is extended by an actuator, e.g., of electromagnetic or piezoelectric type, to generate active

Download English Version:

https://daneshyari.com/en/article/287244

Download Persian Version:

https://daneshyari.com/article/287244

Daneshyari.com