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a b s t r a c t

Cross-ties are often used on cable-stayed bridges for mitigating wind-induced stay
vibration since they can be easily installed on existing systems. The system obtained by
connecting two (or more) stays with a transverse restrainer is designated as an “in-plane
cable-network”. Failures in the restrainers of an existing network have been observed. In a
previous study [1] a model was proposed to explain the failures in the cross-ties as being
related to a loss in the initial pre-tensioning force imparted to the connector. This effect
leads to the “unilateral” free vibration of the network. Deterministic free vibrations of a
three-cable network were investigated by using the “equivalent linearization method”.

Since the value of the initial vibration amplitude is often not well known due to the
complex aeroelastic vibration regimes, which can be experienced by the stays, the
stochastic nature of the problem must be considered. This issue is investigated in the
present paper. Free-vibration dynamics of the cable network, driven by an initial
stochastic disturbance associated with uncertain vibration amplitudes, is examined. The
corresponding random eigen-value problem for the vibration frequencies is solved
through an implementation of Stochastic Approximation, (SA) based on the Robbins–
Monro Theorem. Monte-Carlo methods are also used for validating the SA results.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Context and motivation

Inclined stays on modern cable-stayed bridges are susceptible to wind-induced oscillations (e.g., [2,3]) due to their
lengths and slenderness. Several models exist for predicting the loading mechanisms. Typical examples are “dry galloping”
(e.g., [4,5]) causing large-amplitude oscillation and “rain-wind induced” oscillation (see, for example, [6] for a recent
review). Moreover, other excitation mechanisms can influence the dynamics of the stays, such as various cable-deck
interaction phenomena, linear or nonlinear (e.g., [7–13]). Nevertheless, the loading estimation on stay cables still remains an
open and partially unresolved issue.
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Cross-ties are often employed for vibration reduction in the stays since their installation on existing systems is simple.
Therefore, accurate prediction of cable network dynamics is of great relevance for the design of mitigation systems on cable-
stayed bridges. Even though the emphasis of this study is on cable-cross-tie systems, we provide a short description of other
methods for vibration control for the sake of completeness. Mitigation may also be achieved by using, as an alternative,
damping devices. The use of damping devices, attached to a stay and anchored to the deck, has been proposed by various
investigators (e.g., [14,15]). Recent studies have analyzed the use of more than one damper attached to the stay (e.g., [16]),
nonlinear dampers (e.g., [17–19]) and semi-active dampers (e.g., magneto-rheological, [20]).

Finite-element analysis has traditionally been used to study the dynamics of cross-ties [21,22]. An analytical model,
based on linear taut-cable theory [23], was proposed to study the in-plane free vibration of cable networks and for
predicting the response of real systems (e.g., [24]). This linear analytical formulation has also been considered and used by
other investigators to further examine the cross-tie adequacy in controlling wind-related oscillation (e.g., [25]). Since
suppression of stay vibration in the plane orthogonal to the plane of the stays is limited (e.g., [24,25]) dynamic models,
which include out-of-plane behavior, are not necessary.

To date few studies have addressed the relevant question of cross-tie performance in the presence of nonlinear
dynamic connectors, i.e., restrainers with nonlinear restoring effects [26]. More recently, nonlinear dynamic response of
a network at incipient failure, due to snapping or slackening of the transverse restrainers, has gained the attention of
the researchers. A new model was developed by the authors [27] for the prediction of oscillations on a cable network in
the presence of a nonlinear restoring-force effect in the connectors. The “Equivalent Linearization Method” (ELM) was
used [27,28]. It was found that, by comparing the ELM solution to direct time-domain integration, the ELM is still
accurate for predicting the free vibration. In a previous study [1] the nonlinear effect associated with the incipient
slackening in the restrainer due to the loss of the pre-tensioning force, initially imparted to the restrainers, was
analyzed in more detail. “Unilateral behavior” was employed to simulate extreme conditions in the restrainer at
slackening. This model can reproduce the unilateral restoring-force trend in the cross-ties by using a dimensionless pre-
tensioning parameter τ0;140, which sets the initial level of pre-stressing force in the connector. The quantity τ0;1 was
coined to evaluate the unilateral performance of a spring-type mechanistic model of the cross-tie (e.g., [24]). The model
operates by linearization of the system of differential dynamic equations (ELM). The algorithm estimates a
“performance coefficient” of the cross-tie (ΔΚ1) as a function of vibration amplitude λ of the cable network and of
τ0;1. The model was employed [1] to find the minimum level of τ0;1, needed to preserve linearity in the cross-tie
response, depending on the vibration amplitude parameter λ of the system. It must be noted that the amplitude
parameter λ was coined in [1] to indicate a dimensionless ratio between maximum modal amplitudes in the stays
during unilateral free vibration, induced by nonlinear behavior in the cross-tie. This quantity must not be confused with

Nomenclature

Main symbols are only listed. For other symbols,
refer to [1]

a step size coefficient of the Stochastic Approx-
imation (SA) algorithm

aq gain parameter of the SA algorithm at step q
eðαE;qÞ uncertainty term, contaminating gðαE;qÞ at step

q of the SA algorithm.
gðαE;qÞ noiseless function, associated with the SA

algorithm at step q and with αE,q
kMOD;jðαÞ modified stiffness of the cross-tie segment,

installed between stays j and jþ1 (Eq. (7))
Q λðαEÞ characteristic polynomial function of the

equivalent eigen-value/eigen-vector problem,
Q λðαEÞ ¼ detðQ ðαEÞÞ, as a function of frequency
αE and depending on parameter λeQ ðαÞ ensemble average function of the sequence of
characteristic polynomial functions (Eq. (14))

αE, α random dimensionless frequency (“E”, linear-
ized system)

αE,q, αq random dimensionless frequency of the
linearized system at step q

α; α1 true value of the expected value of α
αq expected value of the dimensionless frequency

at step q (recursive formula)

ΔΚ j random performance coefficient of the cross-
tie segment, installed between stays j and jþ1

ΔΚ j mean value of the random ΔKj

ΔΚ 0
1;αE first derivative of the function ΔΚj (j¼1) with

respect to αE, evaluated at αE ¼ αE
ΔΚ″

1;αE second derivative of the function ΔΚ j (j¼1)
with respect to αE, evaluated at αE ¼ αE

δSA exponent in the formula of the gain parameter aq
εΔΚ1 ,εΔΚ1 ;rel absolute (Eq. (A.3)) and relative (Eq. (A.4))

approximation error due to the hypothesis
E ΔΚ j αEð Þ� �ffiΔΚj E αE½ �ð Þ

λ random dimensionless vibration amplitude
λq dimensionless amplitude, element q of the

random sequence
λu upper limit value of the λ random variable
ϒqðαE;qÞ noisy function of the variable αE,q, evaluated

by the SA algorithm at step q

Subscripts

j generic stay-cable index
q index designating the element of a random

sequence, also used in recursive SA formulas
to designate the iteration step

m sample size of the random sequence of λ
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