Risk Score for Predicting Mortality in Flail Chest
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Background. Flail chest injuries are associated with
high mortality and morbidity. Despite evidence that
operative repair of flail chest is beneficial, it is rarely
done. We sought to create a simple risk score using
available preoperative covariates to calculate individual
risk of mortality in flail chest.

Methods. A logistic regression model was trained
on Ontario Trauma Registry data to generate a mor-
tality risk score. The final model was validated for
calibration and discrimination and corrected for
optimism.

Results. The model uses five risk factors that are
readily obtained during the initial assessment of the
trauma patient: age, Glasgow Coma Score, ven-
tilation, cardiopulmonary resuscitation, and number

lail chest is a severe type of rib fracture with an esti-

mated mortality rate of 10% to 36% of cases [1-4].
Operative repair of flail chest has been found to reduce
length of stay and complications in the critical care unit
and to improve long-term quality of life when compared
with standard methods of care [5-12]. Despite proven
benefits, surgical chest wall stabilization continues to be
underused [8-10]. There is uncertainty about the optimal
technique and its indications. Several studies have
attempted to characterize mortality risk factors in flail
chest, but the findings are conflicting [13-19]. The cut
points vary, parameters are not available before surgery,
terms are too broadly defined, and the clinical applica-
tions are unclear.

A risk score that could be calculated before operative
repair is needed to quantify individual risk of mortality in
flail chest. Patients at low to medium risk of mortality
would then be good candidates for operative repair.
Traditionally, logistic regression has been used to predict
binary outcomes such as mortality and to generate
scoring systems that can be applied at bedside by using a
calculator, application, or computer. The objective of this
study was to create a simple risk score using available
preoperative covariates to calculate individual risk of
mortality.
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of comorbidities. It was determined that less than 6
points is consistent with 1% observed mortality, 6 to
10 points predicts 5% mortality, 11 to 15 points pre-
dicts 22% mortality, and 16 or more points predicts
46% mortality.

Conclusions. We have developed a simple model
that can be easily applied at bedside to predict mor-
tality in patients with flail chest by accessing a
spreadsheet program in an application or other
handheld computer device. This model has the po-
tential to be a useful tool for surgeons considering
operative repair of flail chest.

(Ann Thorac Surg 2015;m:m-m)
© 2015 by The Society of Thoracic Surgeons

Material and Methods

Data were available for 1,190 adult flail chest patients
admitted to lead trauma hospitals from January 1, 1999, to
March 31, 2009, and recorded as part of the Ontario
Trauma Registry (OTR). The OTR was established in
1992, and its direct sources are the 11 lead trauma facil-
ities in Ontario [20]. Each hospital is mandated to report
demographic, prehospital and hospital care, and patient
outcomes on all adult hospitalizations due to major
trauma [20]. The Canadian Institute for Health Informa-
tion maintains the OTR and deidentifies all patient and
institution data [21]. According to Canadian and provin-
cial legislation, it may disclose data without the consent of
the individual patient for its mandated purposes,
including statistical analyses and reporting [21]. There-
fore, ethical approval was not necessary for this study. To
be included in our study, patients must have survived at
least 24 hours after admission to a lead trauma hospital,
leaving 1,082 patients from the original total. There were
41 cases of operative repair of flail chest that were
included and adjusted for in this analysis.

Model predictors were selected by testing 15 potential
mortality risk factors for significance (ie, demographics,
physiology, injury, procedures) through independent ¢
tests for continuous variables and Fisher’s exact test for
categorical variables, adjusting for multiple testing using
the Bonferroni correction (p value was calculated as p <
0.003 after p < 0.05 was divided by 15 variable compari-
sons). The definitive airway variable was defined as oral
or nasal intubation or tracheotomy. Mechanical ventila-
tion included both invasive cases (intermittent positive
pressure ventilation with endotracheal intubation) and
noninvasive cases (continuous positive airway pressure
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Abbreviations and Acronyms

BAC = blood alcohol concentration
CPAP = continuous positive airway pressure
CPR = cardiopulmonary resuscitation

GCS = Glasgow Coma Scale

IPPV = intermittent positive pressure
ventilation

ISS = injury severity score

OR = odds ratio

OTR = Ontario Trauma Registry

SAS = statistical analysis system

SD = standard deviation

TRISS = trauma injury severity score

given through a face mask). To avoid counting definitive
airway and mechanical ventilation twice by the model (as
a definitive airway is often required to administer venti-
lation), we chose to only include mechanical ventilation as
a model predictor. Year of hospital admission and oper-
ative repair were investigated as potential confounders.
We used the first recorded Glasgow Coma Scale (GCS)
score at scene of injury or in hospital; that was the only
variable that contained missing observations, and there
were 132 (12.2%). Logistic regression was, therefore,
modeled three ways to account for possible biases due to
missing observations, including selection bias, con-
founding, and lack of generalizability, respectively: (1) a
model excluding missing data (ie, complete case analysis);
(2) a model excluding GCS score as a predictor; and (3) a
model including multiple imputation for missing obser-
vations of GCS. Numerous imputations were performed
using a fully conditional specification approach, which
has been shown to provide good coverage even with
nonnormal factors such as GCS score. Forty imputations
were used, as has been recommended to prevent power
falloff [22, 23]. The endpoint was all-cause inhospital
mortality.

The study followed the suggested modeling strategy of
Harrell and colleagues [24], using the entire dataset to
train the model. Component plus residual plots were
evaluated to determine whether the model met linearity
assumptions. Predetermined interactions included in the
model were age by GCS and age by ventilation. These
interaction terms were chosen because age is known to be
a strong risk factor for mortality, and there was enough
variation in GCS score and ventilation to make a study of
these possible interactions relevant. A prespecified subset
of predictors was tested for significance in the logistic
model, including the two interaction terms and two
possible confounders (age by GCS, age by ventilation,
year of hospital admission, and whether operative repair
was performed). If a predictor was not significant but had
an odds ratio (OR) greater than or equal to 1.2, it was
allowed to remain in the model because these predictors
contribute to model performance [25].

The final model was validated for calibration and
discrimination. Calibration refers to how well the
observed outcome and predicted outcome agree and can
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be assessed with the Hosmer-Lemeshow goodness of fit
test [26]. Discrimination refers to how well the model can
separate patients at high risk of death and patients at low
risk of death and is given by area under the receiver-
operating characteristic curve (c index) [26, 27]. A good
or excellent predictive model would have a ¢ index above
0.8, a moderately discriminating model would have a ¢
index between 0.7 and 0.8, and a low discriminating
model would have a c index between 0.6 and 0.7 [26].

Predictive models tend to perform better in the
training dataset than in new datasets; therefore, to
determine the expected model performance in new pa-
tients at similar risk of mortality, the optimism-corrected
c index was calculated [24]. The c index was calculated for
the final model in the original sample and was compared
with the c indexes calculated in bootstrap samples.
Bootstrapping was performed by generating 400 random
samples of equal size to the original sample with
replacement from the original sample. The average dif-
ference between the c index calculated using the original
sample and the c indexes calculated using bootstrap
samples represents the optimism of the model [24]. All
analysis was conducted using SAS software, version 9.4
(SAS Institute, Cary, NC).

The ORs and c index of the final model 1 were
compared with the other two models used to address the
missing values. A plot displaying the predicted and
observed probability of risk across the deciles of risk for
model 1 is provided in Figure 1.

Risk scores for mortality were calculated using the
method developed to produce the Charlson Comorbidity
Index, where a whole number point is assigned based on
the OR of a risk factor [28]. In this method, if the OR is
equal to or greater than 1.2 but less than 1.5, 1 point is
assigned; for ORs equal to or greater than 1.5 but less
than 2.5, 2 points are assigned; for ORs equal to or greater
than 2.5 but less than 3.5, 3 points are assigned, and so
forth. For ORs less than 1, the inverse was taken so that
positive point values were always assigned. A plot dis-
playing the number of points and observed mortality is
provided in Figure 2.
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Fig 1. The observed (solid line) and predicted probabilities of death
across deciles of risk for model 1 (dashed line) tend to increase with
higher rankings of predicted risk of death.
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