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a b s t r a c t

In this paper the sensitivity of the mode shapes of two closely spaced eigenvalues are
studied. It is well known that in case of repeated eigenvalues, the meaningful quantity is
not the two individual mode shapes, but rather the subspace defined by the two mode
shapes. Following the ideas of a principle that has been released for publishing recently
denoted as the local correspondence (LC) principle, it is shown, that in the case of a set of
two closely spaced eigenvalues, the mode shapes become highly sensitive to small
changes of the system. However, if the two closely spaced eigenvalues have a reasonable
frequency distance to all other eigenvalues of the system, then a linear transformation
exists between the set of perturbed and unperturbed mode shapes describing the
significant changes as a rotation in the initial subspace defined by the two mode shapes.
Closed form solutions are given for general combined mass and stiffness perturbations,
and it is shown that there is a smooth transition from the case of moderate sensitivity of
the mode shapes towards the case of repeated eigenvalues where the sensitivity goes to
infinite. In case of “nearly repeated eigenvalues” the perturbed set of mode shapes can be
found by solving a special eigenvalue problem for the two closely spaced eigenvalues. The
theory is illustrated and compared with the exact solution for a simple 3 dof system.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Closely spaced modes appear in many practical applications. For instance a simple free–free beam with double
symmetric cross section will in theory have lots of repeated poles because the bending modes around the two axis of
bending will be exactly equal. In practice because small deviations in geometry and mass/stiffness distributions will always
be present, all bending modes will appear in sets of two closely spaced modes. If the cross sections are different, then the
two sets of bending modes will separate, but often it will appear that some bending mode will be closely spaced to some
other bending or torsion mode. Similar conclusions can be drawn for plates and for nearly all structures in practice.

The increased sensitivity of mode shapes to small changes of the system in case of closely spaced eigenvalues is not well
understood and not specifically much mentioned in the literature of structural dynamics even though the observation
appear indirectly in the original treatment of the problem in the theoretical papers by Fox and Kapoor [1] and Nelson [2].

In this introduction we shall revisit the well-known properties of repeated eigenvalues, then consider a few of the
remarks in the literature of structural dynamics on the problem of closely spaced eigenvalues, and then take a short look at
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what has been done in numerical mathematics and in quantum mechanics where the sensitivity of similar eigenvalue
problems have been studied.

As we shall see from the main results of this paper, when a system with two closely spaced eigenvalues is perturbed the
associated mode shapes are mainly rotating in their initial subspace. We are here assuming that there is a reasonable
frequency distance to all other eigenvalues of the system so that the influence of other eigenvalues can be ignored. These
assumptions are not always fulfilled in practical applications, for instance we might have situations with three closely
spaced modes or cases where the distance to the other modes cannot be completely neglected. In such cases the problem
needs to be studied using the more general theory as for instance presented in Brincker et al. [10]. However, if we accept the
assumptions, the two considered modes should be understood more as defining a subspace than as individual vectors.

The case of closely spaced eigenvalues has inherited this important property from the case of repeated eigenvalues, and
therefore it is useful to revisit this well-known case as an introduction to the subject of this paper. Considering the theory of
repeated eigenvalues we will limit the analysis to the simple classical eigenvalue problem related to the un-damped case of
a general dynamic system with N degrees of freedom (dof's)

M�1Kb¼ω2b (1.1)

where M is the mass matrix, K is the stiffness matrix, ω2 is one of the positive and real eigenvalues, where ω is denoted the
natural frequency, and b is the corresponding real valued eigenvector, also denoted the mode shape. The natural frequencies
and the mode shapes are found by the eigenvalue decomposition M�1K¼ B½ω2

n�B�1 where B¼ ½bn� is a matrix of
eigenvectors and ½ω2

n� is a diagonal matrix holding the eigenvalues.
The well-known orthogonality properties of the mode shapes are easily verified writing Eq. (1.1) for two different modes

with the natural frequencies ωn;ωm and the mode shapes bn;bm. Multiplying each of the equations with the other
transposed mode shape from the left, subtracting the two equations and using that bT

nKbm ¼ bT
mKbn we get

ðω2
n�ω2

mÞbT
nMbm ¼ 0 (1.2)

Thus we conclude that if the two eigenvalues are different, the inner product bT
nMbm ¼ 0. This leads directly to the well-

known orthogonality equations BTMB¼ ½mn� and BTKB¼ ½kn�, where the diagonal matrices ½mn� and ½kn� holds the modal
masses and the modal stiffness's respectively.

In case some eigenvalues are equal the associated eigenvectors can either still exist or degenerate into a single
eigenvector, see Bernal [3]. In the latter case the matrix M�1K is defective (will not have a complete basis of eigenvectors)
and we shall not consider that case here. Let us say that we consider a case where the two eigenfrequencies ω1;ω2

corresponding to the mode shapes b1, b2 are identical, thus ω1 ¼ω2 ¼ω. From Eq. (1.2) we see that the orthogonality
between the two mode shapes b1,b2 is no longer assured, as the condition given by Eq. (1.2) is always satisfied when
ω1�ω2 ¼ 0. However, any linear combination of the two mode shapes b¼ t1b1þt2b2 is also an eigenvector because from
the eigenvalue problem (1.1) we have that M�1Kðt1b1þt2b2Þ ¼ω2b.

We can define a new set of eigenvectors such that the set satisfies the orthogonality equations. For instance we can
choose the new set of eigenvectors as b1;b

0
2 where the vector b0

2 ¼ ½b1;b2�t¼ Bt and orthogonal to b1, i.e. such that

bT
1MBt¼ 0 (1.3)

and we can define the transformation by the angle θ setting tT ¼ f cos θ; sin θg. In this light we can say that we rotate the
vector b2 in the subspace defined by b1,b2 until b2 is perpendicular to b1, see Fig. 1.

Calculating the row vector fm1;m2g ¼ bT
1MB and using Eq. (1.3) defines a possible solution as θ¼ arctanð�m1=m2Þ.1

'
2b

b2

b1

θ

Fig. 1. In case of repeated eigenvalues, the corresponding mode shapes are not necessarily orthogonal, but one of the vectors might be chosen for the basis –
in this case b1 – and the other one – in this case b2 – is then rotated in the subspace defined by b1, b2 until it is perpendicular to b1.

1 It should be noted that this procedure does not secure that the length (scaling) of the rotated vector is kept unchanged.
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