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Available online 2 October 2014 two closely spaced eigenvalues, the mode shapes become highly sensitive to small
changes of the system. However, if the two closely spaced eigenvalues have a reasonable
frequency distance to all other eigenvalues of the system, then a linear transformation
exists between the set of perturbed and unperturbed mode shapes describing the
significant changes as a rotation in the initial subspace defined by the two mode shapes.
Closed form solutions are given for general combined mass and stiffness perturbations,
and it is shown that there is a smooth transition from the case of moderate sensitivity of
the mode shapes towards the case of repeated eigenvalues where the sensitivity goes to
infinite. In case of “nearly repeated eigenvalues” the perturbed set of mode shapes can be
found by solving a special eigenvalue problem for the two closely spaced eigenvalues. The
theory is illustrated and compared with the exact solution for a simple 3 dof system.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Closely spaced modes appear in many practical applications. For instance a simple free-free beam with double
symmetric cross section will in theory have lots of repeated poles because the bending modes around the two axis of
bending will be exactly equal. In practice because small deviations in geometry and mass/stiffness distributions will always
be present, all bending modes will appear in sets of two closely spaced modes. If the cross sections are different, then the
two sets of bending modes will separate, but often it will appear that some bending mode will be closely spaced to some
other bending or torsion mode. Similar conclusions can be drawn for plates and for nearly all structures in practice.

The increased sensitivity of mode shapes to small changes of the system in case of closely spaced eigenvalues is not well
understood and not specifically much mentioned in the literature of structural dynamics even though the observation
appear indirectly in the original treatment of the problem in the theoretical papers by Fox and Kapoor [1] and Nelson [2].

In this introduction we shall revisit the well-known properties of repeated eigenvalues, then consider a few of the
remarks in the literature of structural dynamics on the problem of closely spaced eigenvalues, and then take a short look at
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Fig. 1. In case of repeated eigenvalues, the corresponding mode shapes are not necessarily orthogonal, but one of the vectors might be chosen for the basis -
in this case b; - and the other one - in this case b, - is then rotated in the subspace defined by by, b, until it is perpendicular to b;.

what has been done in numerical mathematics and in quantum mechanics where the sensitivity of similar eigenvalue
problems have been studied.

As we shall see from the main results of this paper, when a system with two closely spaced eigenvalues is perturbed the
associated mode shapes are mainly rotating in their initial subspace. We are here assuming that there is a reasonable
frequency distance to all other eigenvalues of the system so that the influence of other eigenvalues can be ignored. These
assumptions are not always fulfilled in practical applications, for instance we might have situations with three closely
spaced modes or cases where the distance to the other modes cannot be completely neglected. In such cases the problem
needs to be studied using the more general theory as for instance presented in Brincker et al. [10]. However, if we accept the
assumptions, the two considered modes should be understood more as defining a subspace than as individual vectors.

The case of closely spaced eigenvalues has inherited this important property from the case of repeated eigenvalues, and
therefore it is useful to revisit this well-known case as an introduction to the subject of this paper. Considering the theory of
repeated eigenvalues we will limit the analysis to the simple classical eigenvalue problem related to the un-damped case of
a general dynamic system with N degrees of freedom (dof's)

M~ 'Kb = w?b (1.1)

where M is the mass matrix, K is the stiffness matrix, w? is one of the positive and real eigenvalues, where  is denoted the
natural frequency, and b is the corresponding real valued eigenvector, also denoted the mode shape. The natural frequencies
and the mode shapes are found by the eigenvalue decomposition M~ 'K =B[w2]B~! where B=[b,] is a matrix of
eigenvectors and [w?] is a diagonal matrix holding the eigenvalues.

The well-known orthogonality properties of the mode shapes are easily verified writing Eq. (1.1) for two different modes
with the natural frequencies w,,®, and the mode shapes by, b,,. Multiplying each of the equations with the other
transposed mode shape from the left, subtracting the two equations and using that bZKbm = brTnKbn we get

(0% — w?)bIMb,, =0 (1.2)

Thus we conclude that if the two eigenvalues are different, the inner product bZMbm = 0. This leads directly to the well-
known orthogonality equations B'MB = [m,] and B"KB = [k,], where the diagonal matrices [m,] and [k,] holds the modal
masses and the modal stiffness's respectively.

In case some eigenvalues are equal the associated eigenvectors can either still exist or degenerate into a single
eigenvector, see Bernal [3]. In the latter case the matrix M~ 'K is defective (will not have a complete basis of eigenvectors)
and we shall not consider that case here. Let us say that we consider a case where the two eigenfrequencies w,®»
corresponding to the mode shapes by, b, are identical, thus @, = @, = . From Eq. (1.2) we see that the orthogonality
between the two mode shapes by,b, is no longer assured, as the condition given by Eq. (1.2) is always satisfied when
@1 —w, = 0. However, any linear combination of the two mode shapes b = t;b; +t;b; is also an eigenvector because from
the eigenvalue problem (1.1) we have that M~ 'K(t;b; +t;b,) = @?b.

We can define a new set of eigenvectors such that the set satisfies the orthogonality equations. For instance we can
choose the new set of eigenvectors as by, b, where the vector b, = [by,b,]t = Bt and orthogonal to by, i.e. such that

b/MBt =0 (1.3)

and we can define the transformation by the angle @ setting t' = { cos €, sin 8}. In this light we can say that we rotate the
vector b, in the subspace defined by b,,b, until b, is perpendicular to by, see Fig. 1.
Calculating the row vector {my,my} = beB and using Eq. (1.3) defines a possible solution as @ = arctan(—m; /my)."

" It should be noted that this procedure does not secure that the length (scaling) of the rotated vector is kept unchanged.
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