ELSEVIER

Contents lists available at ScienceDirect

Journal of Sound and Vibration

journal homepage: www.elsevier.com/locate/jsvi

Modeling and analysis of stick-slip and bit bounce in oil well drillstrings equipped with drag bits

Jasem M. Kamel ¹, Ahmet S. Yigit *

Department of Mechanical Engineering, Kuwait University, PO Box 5969 Safat 13069, Kuwait

ARTICLE INFO

Article history: Received 17 July 2013 Received in revised form 31 May 2014 Accepted 2 August 2014 Handling Editor: L.N. Virgin

ABSTRACT

Rotary drilling systems equipped with drag bits or fixed cutter bits (also called PDC), used for drilling deep boreholes for the production and the exploration of oil and natural gas, often suffer from severe vibrations. These vibrations are detrimental to the bit and the drillstring causing different failures of equipment (e.g., twist-off, abrasive wear of tubulars, bit damage), and inefficiencies in the drilling operation (reduction of the rate of penetration (ROP)). Despite extensive research conducted in the last several decades, there is still a need to develop a consistent model that adequately captures all phenomena related to drillstring vibrations such as nonlinear cutting and friction forces at the bit/rock formation interface, drive system characteristics and coupling between various motions. In this work, a physically consistent nonlinear model for the axial and torsional motions of a rotating drillstring equipped with a drag bit is proposed. A more realistic cutting and contact model is used to represent bit/rock formation interaction at the bit. The dynamics of both drive systems for rotary and translational motions of the drillstring, including the hoisting system are also considered. In this model, the rotational and translational motions of the bit are obtained as a result of the overall dynamic behavior rather than prescribed functions or constants. The dynamic behavior predicted by the proposed model qualitatively agree well with field observations and published theoretical results. The effects of various operational parameters on the dynamic behavior are investigated with the objective of achieving a smooth and efficient drilling. The results show that with proper choice of operational parameters, it may be possible to minimize the effects of stick-slip and bit-bounce and increase the ROP. Therefore, it is expected that the results will help reduce the time spent in drilling process and costs incurred due to severe vibrations and consequent damage to equipment.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A rotary drilling system equipped with a drag bit (fixed cutter bits usually referred to as polycrystalline diamond compact or PDC bits) is one of the bit types used to drill deep boreholes for the production and the exploration of oil and natural gas. Field measurements [1,2] show that the drilling systems with drag bits are more prone to different types of oscillations: namely, lateral, axial and the torsional modes of vibration can be observed with large amplitudes. The main causes of these

^{*} Corresponding author. Tel.: +965 2498 5791. E-mail address: ahmet.yigit@ku.edu.kw (A.S. Yigit).

¹ Kuwait National Petroleum Company, Kuwait.

Nomenclature		n_o	Rotary table motor gearbox ratio (-)
		R_b	Bit radius (m)
A	Cross sectional area of drill line (m ²)	R_{DW}	Draw works drum radius (m)
b_o	The acceleration term in hyperbolic tangent	R_m	Draw works armature resistance (Ω)
	function (-)	$R_{\rm mo}$	Rotary table armature resistance (Ω)
BHA	Bottom hole assembly (-)	ROP	Rate of penetration (m/s)
C_{rt}	Torsional internal damping in gearbox (N m s)	TOB	Down Hole Torque On Bit (N m)
C_V	The effective damping due to fluid motion	TOB_f	Torque On Bit friction component (N m)
	around the drill string (N m s)	TOB_c	Torque On Bit cutting component (N m)
$C_{\rm ds}$	Axial drill string damping (N s/m)	t_n	The time required for the bit to rotate by angle
d d	Depth of cut (m)	-11	of $(2\pi/n)$ (s)
D_o	Drill line diameter (m)	$T_{ m mo}$	The torque at the motor shaft driving the
E_s	Modulus of elasticity of the drill line (Pa)	- 1110	rotary table (N m)
	The friction force applied on draw works	T_m	The torque at the motor shaft driving the draw
$F_{\rm break}$	drum (N)	* m	works drum (N m)
E	• /	T_L	The torque applied on draw works drum from
Fhook	Hook load (N)	1 L	suspended weight (N m)
$f(\dot{x}_a)$	Heaviside function used to capture the bound-	T_{DW}	The torque transformed from the motor shaft
	ary condition of WOB_f that depends on axial	1 DW	to the draw works drum (N m)
C cin	velocity in Phase II (-)	т	
$f(\dot{\theta})$	Heaviside function used to capture the TOB	$T_{ m fr}$	The kinematic friction torque applied on draw
	friction component sign variations (-)	17	works drum through arm break (N m)
g	Acceleration of gravity (m/s ²)	$V_{ m DL}$	The effective drill line velocity (m/s)
I	Draw works motor current (A)	V_d	Desired suspension mass speed (m/s)
I_m	Rotary table motor current (A)	$V_{\rm CD}$	The supplied rotary table motor voltage
$J_{\rm DW}$	Inertia of draw works drum (kg m²)	V_c	The supplied draw works motor voltage
$J_{ m ms}$	Inertia of draw works motor shaft (kg m ²)	$W_{ m dd}$	Desired draw works drum torsional speed
J	Lumped inertia of the drill string (kg m ²)		(rad/s)
$J_{\rm rt}$	Inertia of the rotary table (kg m²)	w_d	Rotary table desired speed (rad/s)
J_m	Inertia of the rotary table motor shaft (kg m²)	WOB	Down Hole Weight On Bit (N)
$J_{ m BHA}$	Inertia of BHA (kg m²)	WOB_f	Weight On Bit friction component (N)
k_c	Rock linear contact stiffness (N/m)	WOB_c	Weight On Bit cutting component (N)
K_m	Draw works motor constant (V s)	x_a	The axial response of the bit (m)
$K_{ m mo}$	Rotary table motor constant (V s)	χ_{Top}	The axial response of the suspension mass (m)
K_s	The drill line stiffness (N/m)	$\chi_{ m DL}$	The drill line displacement (m)
K	The effective torsional stiffness of the drill	γ	Spatial orientation of wear flats (-)
	string (N m/rad)	ε	Intrinsic specific energy (Pa)
$k_{\rm ds}$	Drill string axial stiffness (N/m)	ξ	Inclination of cutting force on the cutting
L_p	Drill-pipes length (m)		face (-)
L_b	Bottom hole assembly (BHA) length (m)	$\theta_{\rm DW},~\dot{ heta}_{\rm DW}$ The angular displacement and velocity of draw	
L_o	Initial length of the drill-line from the crown		works drum (rad, rad/s)
	block to the traveling block (m)	$\theta,\dot{ heta}$	The angular displacement and velocity of the
L_c	Draw works armature inductance (H)		bit (rad, rad/s)
L_i	Rotary table armature inductance (H)	ℓ_n	Wear flat length beneath each blade (m)
L	The length of drill line from the crown block	μ	Friction coefficient between rock formation
_	till the traveling Block (m)	,	and bit (-)
m	Suspension mass (kg)	μ_P	Draw works break pad friction coefficient (-)
m_{Top}	The drill string effective mass (kg)	μ_f	Viscosity of drilling mud (N s/m ²)
m_a	Fluid mass (kg)	v	Poisson's ratio of drilling line (-)
m_f		ξ ₀	Axial damping ratio (-)
m_{BHA}	BHA mass (kg) Number of blades (-)		Drill string material density (kg/m ³)
n	* *	ρ_b	Mud density (kg/m³)
n _{DW}	Draw works motor gearbox ratio (-)	$oldsymbol{ ho_f}{oldsymbol{\sigma}}$	Rock normal contact stress (Pa)
N	Number of times the drill line runs between	U	NOCK HOTHIGI COHTACT SHESS (Fd)
	the crown block and the traveling block (-)		

vibrations include contact and friction at the borehole/drillstring and bit/rock formation interfaces, eccentricity, imbalance, initial curvature in the drill collar sections, and various linear or nonlinear resonances. These severe vibrations often cause failures of drillstrings, abrasive wear of tubulars, damage of the bit, reduction of the rate of penetration (ROP), and consequently incur high costs [3–6]. This paper concentrates on the axial and torsional modes of vibrations, bit bounce and

Download English Version:

https://daneshyari.com/en/article/287427

Download Persian Version:

https://daneshyari.com/article/287427

<u>Daneshyari.com</u>