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a b s t r a c t

As the key structure of most dynamic pressure sensors, a diaphragm backed by an air
cavity plays a critical role in the determination of sensor performance metrics. In this
paper, we investigate the influence of air cavity length on the sensitivity and bandwidth.
A continuum mechanics model neglecting the air viscous effect is first developed to
capture the structural–acoustic coupling between a clamped circular diaphragm and a
cylindrical backing air cavity. To facilitate sensor design, close-form approximations are
obtained to calculate the static sensitivity and the fundamental natural frequency of the
air-backed diaphragm. Parametric studies based on this analytical model show that the air
cavity can change both the effective mass and the effective stiffness of the diaphragm. One
new finding is that the natural frequency of the air-backed diaphragm behaves differently
in three different cavity length ranges. In particular, due to the mass effect of the air cavity
being dominant, it is shown for the first time that the natural frequency decreases when
the cavity length decreases below a critical value in the short cavity range. Furthermore, a
finite element method (FEM) model is developed to validate the continuum mechanics
model and to study the damping effect of the air cavity. These results provide important
design guidelines for dynamic pressure sensors with air-backed diaphragms.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic pressure sensors have been widely used in a variety of consumer, commercial, and military applications
including telecommunication [1], speech recognition [2], hearing aids [3], and sound source localization [4]. In terms of
transduction methods, these sensors can be based on piezoelectric [5,6], piezoresistive [7], optical [8–10], and capacitive
principles [11–13]. For almost all of these sensors, the first stage of transduction involves the deflection of a flexible
diaphragm in response to a net differential pressure across its thickness [14,15]. On the backside of the diaphragm, there
exists a cavity that is most often filled with air. In general, the air cavity has the following effects that are important to the
performance of a pressure sensor: (i) it provides damping to the diaphragm motion due to the viscosity of air (i.e., resistance
to the air flow in the cavity), (ii) it increases the effective stiffness of the diaphragm due to the air spring effect, and (iii) it
increases the effective mass of the diaphragm due to air particles moving together with the diaphragm.

Because the air cavity plays a critical role in determination of sensor performance, it is imperative to study the mechanics
of an air-backed diaphragm, which is the key structure for most dynamic pressure sensors. This is particularly important as
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Nomenclature

a radius of the diaphragm
Am coefficient to normalize Ud(r)
Bd vector used to superpose the modal coordi-

nates of the diaphragm displacement
Bn coefficients used to normalize Ua(r)
c0 speed of sound in the air
cd speed of longitudinal wave in the diaphragm
D flexural rigidity of the diaphragm
Ed Young's modulus of the diaphragm
fc1 fundamental natural frequency of the air

backed diaphragm
hd thickness of the diaphragm
Ha,n transfer function relating the displacement ~wa

to the reaction pressure ~pR

Hc,mn transfer function of the coupled system as
defined in Eq. (23)

Hc transfer function matrix of the coupled system
as defined in Eq. (32)

Hd,m transfer function of the diaphragm for the
mth mode

I0, I00 modified Bessel function of the first kind and its
derivative

IM identity matrix of order M
J0, J00 Bessel function of the first kind and its

derivative
Ka stiffness matrix of the air cavity as defined in

Eq. (24)
Kc stiffness matrix of the coupled system as

defined in Eq. (33)
Kd stiffness matrix of the diaphragm as defined in

Eq. (28)
l length of the air cavity
(l/a)cr,ss critical cavity length when the air cavity and

the diaphragm have equal stiffness
(l/a)cr,long critical cavity length separating the long and

medium cavity length regions
(l/a)cr,short critical cavity length separating the medium

and short cavity length regions
m,n order of mode shape
Ma,n equivalent mass of the air cavity as defined in

Eq. (27)
~Ma;n equivalent mass of the air cavity as defined in

Eq. (20)
Ma mass matrix of the air cavity as defined in

Eq. (25)
Mc mass matrix of the coupled system as defined

in Eq. (34)
Md mass matrix of the diaphragm as defined in

Eq. (29)
N0 in-plane force of the diaphragm
Nd vector in expanding the applied pressure in

terms of the modal coordinates of the diaphragm
p0 static pressure of the air
pd net pressure applied to the diaphragm
~pd net pressure normalized by Young's modulus

of the diaphragm
pe pressure applied to the external surface of the

diaphragm

pR reaction pressure at the diaphragm–air
interface

~pR reaction pressure normalized by the static
pressure p0

Ped,m coefficients in expanding pe in terms of the
diaphragm's modes

~Ped vector of the normalized pressure applied to
the top surface of the diaphragm

PRa,n modal coefficients in expanding pR in terms of
the air cavity's modes

PRd,m coefficients in expanding pR in terms of the air
cavity's modes

Q non-dimensionalized variables as defined in
Eq. (49)

Q1–Q4 non-dimensionalized variables as defined in
Eq. (47)

r normalized radial coordinate, 0rrr1
sdyn dynamic sensitivity of pressure sensors
t time
Tmn transformation coefficients between the

modes of the diaphragm and the air cavity
T matrix whose elements are Tmn

Ua(r) radial part of the mode shape of the air cavity
Ud(r) radial part of the diaphragm's mode shape
wa displacement within the air cavityewa displacement wa normalized by the radius a
wd transverse displacement of the diaphragm
~wd transverse diaphragm displacement normal-

ized by the diaphragm radius a
Wa,n modal coefficients in expanding wa in terms of

the air cavity's modes
Wd,m coefficients in expanding wd in terms of the

diaphragm's modes
~Wd vector of the normalized displacement of the

diaphragm
z normalized axial coordinate, 0rzr1
Z(z) axial part of the mode shape of the air cavity
α1, α2 variables in the characteristic equation of the

diaphragm
β variable in the characteristic equation for the

air cavity
χ normalized tension parameter of the

diaphragm
δmn Kronecker delta, δmn¼0 for man; δmn¼1 if

m¼n
γ adiabatic index of the air
λ sound wavelength in the air
ν Poisson's ratio of the diaphragm
θ Azimuthal coordinate
ρ0 static density of the air
ρd density of diaphragm
σ a non-dimensionalized variable as defined in

Eq. (45)
ω radial frequency
ωd natural frequency of the diaphragm
ξ damping ratio
ζ normalized parameter as defined by Eq. (11)
ϑ a non-dimensionalized variable as defined in

Eq. (39)
Λ natural frequency parameter of the diaphragm
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