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a b s t r a c t

In this paper, we study the free vibration of multilayered magneto-electro-elastic plates
under combined clamped/free lateral boundary conditions using a semi-analytical discrete-
layer approach. More specifically, we use piecewise continuous approximations for the field
variables in the thickness direction and continuous polynomial approximations for those
within the plane of the plate. Group theory is further used to isolate the nature of the
vibrational modes to reduce the computational cost. As numerical examples, two cases of
the lateral boundary conditions combined with the clamped and free edges are considered.
The non-dimensional frequencies and mode shapes of elastic displacements, electric and
magnetic potentials are presented. Our numerical results clearly illustrate the effect of the
stacking sequences and magneto-electric coupling on the frequencies and mode shapes of
the anisotropic magneto-electro-elastic plate, and should be useful in future vibration study
and design of multilayered magneto-electro-elastic plates.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Multilayered composites offer many useful features as structural components and as such, response of such composites
under external loads is an important research subject. Besides the common numerical methods, such as the finite-element
and boundary-element methods, various analytical/semi-analytical solutions were presented for layered composite plates.
For instance, Vel and Batra [1] presented an analytical three-dimensional (3D) solution for the static deformation of
multilayered piezoelectric plates under general boundary conditions in terms of series expansion. The corresponding
bending vibration was further solved by Vel et al. [2]. The extended Kantorovich method was also applied to the static
bending of layered piezoelectric plates by Kapuria and Kumari [3], and to the 3D deformation of layered elastic plates by
Kumari et al. [4] where an iterative scheme was employed.

Recent development of smart materials/structures is receiving widespread attention owing to their potential applications
in various engineering fields such as sensors, actuators and microwave devices. As an important member of these smart
materials, magneto-electro-elastic (MEE) materials which consist of piezoelectric (PE) and piezomagnetic (PM) phases, are
able to facilitate the energy conversion between the electric and magnetic fields. Such a phenomenon is called
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magnetoelectric (ME) effect which cannot be found in the pure piezoelectric or piezomagnetic material. Since the report on
the ME effect by van Suchtelen [5], many interesting studies on MEE materials and structures have been carried out. Among
them, the static and dynamic behaviors of typical MEE structures, for example plates and beams, are especially investigated.

For a simply supported multilayered MEE plate, the exact closed-form solution of the deformation under a static
mechanical load was derived using the pseudo Stroh formalism [6]. The corresponding free vibration was analyzed by Pan
and Heyliger [7]. Another method, the state-space formulation, was also widely used in the analysis of the static and
dynamic behaviors of MEE multilayered plates [8,9]. Free vibration of a non-homogeneous transversely isotropic MEE plate
was carried out by Chen et al. [10]. Besides, the discrete-layer and domain-discretization methods were also proposed to the
analysis of free vibration of anisotropic elastic and MEE plates and shells [11–15].

For a simply supported MEE plate, analytical solutions of the field variables can be found that satisfy exactly the lateral
boundary conditions. However, under other lateral boundary conditions such as the clamped or free conditions, one cannot
find such analytical expressions of the field variables. Furthermore, many commercial finite-element codes cannot handle
the multiphase coupling problem. Thus, in this paper, a semi-analytical discrete-layer model of the governing differential
equations is developed and applied to typical layered MEE media under combined clamped and free lateral boundary
conditions. Our representative numerical results on the natural frequencies and mode shapes clearly show the unique
characteristics of these MEE solids which should be of particular interest to the design of layered MEE composites.

2. Formulation

2.1. Governing equations

While our semi-analytical model can be applied to any layered plate, we consider an anisotropic, MEE, and three-layered
rectangular plate with horizontal dimensions a and b and total thickness H (in the vertical or thickness direction) as shown
in Fig. 1. A Cartesian coordinate system is attached to the plate and its origin is at one of the four corners on the bottom
surface, with the plate occupying the region of zZ0. The interface of each layer is assumed to be bonded perfectly. In other
words, the elastic displacements, electric and magnetic potentials, elastic traction, and the z-components of the electric
displacement and magnetic induction are continuous across the interfaces.

For a linear, anisotropic MEE solid, the coupled constitutive equation can be written in the following form:

si ¼ cikγk�ekiEk�qkiHk; Di ¼ eikγkþεikEkþdikHk; Bi ¼ qikγkþdikEkþμikHk; (1)

where si, Di and Bi are the stress, electric displacement and magnetic induction, respectively; γk, Ek and Hk are the strain,
electric field and magnetic field, respectively; cik, εik and μik are the elastic, dielectric, and magnetic permeability coefficients,
respectively; eik, qik and dik are the piezoelectric, piezomagnetic and magnetoelectric coefficients, respectively. We remark
that various uncoupled cases can be reduced by setting the appropriate coupling coefficients to zero.

The relationship between the strain and displacement, electric (magnetic) field and its potential can be expressed as

γij ¼ 0:5ðui;jþuj;iÞ; Ei ¼ �φi; Hi ¼ �ψ ; i; (2)

where ui are the elastic displacements, and φ and ψ are the electric and magnetic potentials, respectively. The subscript after
the comma, e.g. “,i”, in the elastic displacement, electric and magnetic potentials denotes partial derivative with respect to
the i-th coordinate xi (x1¼x, x2¼y, x3¼z).

For the problem to be considered in this paper, we assume that the body forces, electric charge and current densities are
zero; thus the governing equations of motion in the dynamic case are given by

sij; j ¼ ρ
∂2ui

∂t2
; Dj; j ¼ 0; Bj; j ¼ 0; (3)

where ρ is the density of the material.
While general conditions may be prescribed to the lateral boundaries (along the whole thickness of the plate; i.e., for any

given z-coordinate in the problem domain) of the layered plate, we consider the following two typical cases.

Fig. 1. The three-layered magneto-electro-elastic plate.
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