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a b s t r a c t

This study investigates the two-to-one internal resonance of the shallow arch with both
ends elastically constraining, and the primary resonance case is considered. The full-basis
Galerkin method and the multi-scale method are applied to obtain the modulation
equations. It is shown that the natural frequencies of the first two modes cross/avoid to
each other when the stiffness of elastic supports at two ends is the same/different.
Moreover, the nonlinear modal interactions between these two modes may not/may be
activated. The force/frequency-response curves are employed to explore the nonlinear
response of the elastically supported shallow arch. The saddle-node bifurcation points and
Hopf bifurcation points are observed in these cases. Moreover, the dynamic solutions,
i.e., the periodic solution, quasi-periodic solution and chaotic solution are discussed.
The numerical simulations are used to illustrate the route to chaos via period-doubling
bifurcation.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Shallow arches are widely used in many engineering fields, i.e., civil engineering, mechanical engineering and aerospace
engineering. The large amplitude vibrations may occur when they are designed to low-damping, light-weight and full-load.
Therefore, the nonlinear dynamic responses and bifurcations of shallow arches have attracted the interest of many
researchers [1–5].

Overall, due to the initial static configuration of the shallow arch, the internal resonance may be activated. In this case, the
energy transfer between the involved resonant modes may occur, resulting in complex dynamic behavior. Tien et al. [6,7]
studied the bifurcations and chaos of a planar hinged-hinged shallow arch under a harmonic excitation with 1:2/1:1 internal
resonances between the lowest two modes by using a 2DOF model. Malhotra and Namachchivaya [8,9] investigated the
global dynamics of a planar hinged-hinged shallow arch subjected to a spatially and temporally varying force under
principal subharmonic resonance and 1:2/1:1 internal resonance near single mode periodic motions. Moreover, the 1:2
internal resonance of a shallow arch under a periodic excitation is studied by Bi and Dai [10]. Recently, Zulli et al. [11]
analyzed the dynamics of curved beams undergoing large oscillations via varying the initial curvature. On the other hand,
Thomsen [12] studied the chaotic motions of the two-to-one internal resonance. Benedettini et al. [13] investigated the
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nonlinear coupling and instability of a non-shallow arch excited by a sinusoidally varying force under 2:1 internal
resonance.

Generally speaking, these studies only consider the fixed boundary conditions. However, the real boundary conditions
are much more complex than this case in the engineering field. On the other hand, these conditions directly affect the
mechanical properties of the arch. Therefore, it is reasonable to treat these conditions as elastic constraint/support
boundaries. In this respect, many studies have investigated the instability phenomenon of the snap-through [14,15]. Chen
and his coworkers [16,17] studied the dynamic snap of the shallow arch with one end pinned while another end supported
by a horizontal spring. Pi and his coworkers [18–20] investigated a series of studies on the planar nonlinear stability of pin-
ended shallow arches with various elastic supports. Lee et al. [21] examined the planar free vibration of the rotating curved
beam with one end elastically restrained. Moreover, the nonlinear stability of the shallow parabolic arch with horizontal
spring supports subjected to the uniform load was investigated [22,23].

Most of these studies focused on the nonlinear stabilities of the shallow arch with complex boundary conditions.
Whereas, no study consider the internally resonant response of the shallow arch. In fact, depending on the difficult
boundary condition and the initial configuration, the natural frequencies of the shallow arch may exist the integer ratio, i.e.,
1:1, 2:1 and 3:1. More importantly, for the shallow arch with elastic supports, if the stiffness of two ends is different, the
natural modes do not exhibit any symmetric character [24]. In this case, the first-order coefficient will be different from zero
[25,26]. Therefore, the internal resonance of the shallow arch can be activated.

In this study, the two-to-one resonant response of the shallow arch with two ends vertically elastically constrained ends
is investigated. The paper is organized as follows. In Section 2 the modulation equations of the shallow arch with elastic
supports are obtained, and the eigenvalue analysis on the linear problem is performed. The full-basis Galerkin discretization
and multi-scale perturbation analysis are shown in Section 3. Section 4 discusses the modal interaction activation,
the equilibrium and dynamic solutions of the modulation equations. Finally, a short summary of results is presented in
Section 5.

Nomenclature

am; βm real modulus and phase for Am

an; βn real modulus and phase for An

A area of cross section
Am;An;Akmodulus of mth-, nth-, kth-order mode in

first-order approximate solution
b dimensionless arch rise
ci coefficients of mode
cc conjugate for preceding complex terms
Di partial differential to time scales
E elastic modulus
f̂ dimensional vertical periodic load
fk excitation amplitude of kth-order mode
F amplitude of periodic excitation
G2 quadratic nonlinear operator
G3 cubic nonlinear operator
i imaginary unit
I inertia moment of cross section
k̂1; k̂2 stiffness of dimensional vertical supports at

two ends
k1; k2 stiffness of dimensionless vertical supports at

two ends
l̂ dimensional arch span
L linear operator
m lower order of 2:1 internal resonance
n higher order of 2:1 internal resonance
NST non-resonant terms
ô origin of Cartesian coordinate
pm; qm Cartesian form coordinates for Am

pn; qn Cartesian form coordinates for An

rk generalized coordinates
R gyration radius of cross section
S1; S2 first-order quadratic coefficients

Smm, Snn, Smn second-order quadratic coefficients
t dimensionless time
t̂ dimensional time
T0; T1; T2 time scales
u dimensionless vertical displacements of an

arbitrary point
û dimensional vertical displacements of an

arbitrary point
x; y x; y-axis of dimensionless Cartesian coordinate
x̂; ŷ x̂; ŷ�axis of dimensional Cartesian coordinate
χm; χn detuning terms in Cartesian form modulation

equations
δ Kronecker delta
ε small parameter
γ1; γ2; γ3 phases in polar form modulation equations
Γ1 � Γ5 coefficients in mode
κ1 � κ6 shape functions
Λkij;Γkijh coefficients related to modes in Galerkin

integration
μ dimensionless damping parameter
μk damping coefficient of kth-order mode
μ̂ dimensional damping parameter
ω frequency
ωk kth-order frequency
Ω frequency of periodic excitation
ϕk kth-order mode
π PI
ψ dimensionless initial arch axis
ψ̂ dimensional initial arch axis
ρ density
σ1 detuning parameter between ωm and ωn

σ2 detuning parameter between Ω and ωm (ωn)
∑ summation symbol
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