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a b s t r a c t

In this paper, a method of analysis of a beam that is continuously supported on a linear
nonhomogeneous elastic foundation and subjected to a harmonically excited mass is
presented. The solution is obtained by decomposing the nonhomogeneous foundation
properties and the beam displacement response into double Fourier summations which are
solved in the frequency–wavenumber domain, from which the space–time domain response
can be obtained. The method is applied to railway tracks with step variation in foundation
properties. The validity of this method is checked, through examples, against existing
methods for both homogeneous and nonhomogeneous foundation parameters. The effect
of inhomogeneity and the magnitude of the mass are also investigated. It is found that a step
variation in foundation properties leads to a reduction in the beam displacement and an
increase in the resonance frequency for increasing step change, with the reverse occurring for
decreasing step change. Furthermore, a beam on nonhomogeneous foundation may exhibit
multiple resonances corresponding to the foundation stiffness of individual sections, as the
mass moves through the respective sections along the beam.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The model of a beam on an elastic foundation has been extensively used over the years for modelling the dynamic
behaviour of railway tracks [1–3]. Diverse solutions have been presented for this problem for varying types of loads; static
and dynamic, stationary and moving, deterministic and stochastic. In their solutions, most authors assume that the beam is
supported on a linear elastic foundation with homogeneous stiffness and damping parameters. Solutions to the
homogeneous case are readily available in the literature, e.g. the Fourier and Laplace transformation methods as well as
direct approaches of solving the differential equations. Although this fundamental assumption of homogeneous parameters
provides good understanding of the dynamic behaviour of a beam on an elastic foundation, it limits the true representation
of the practical situation in most railway based applications. This is because there are many practical instances of
nonhomogeneity in railway tracks. For example, in Hunt [4] several classes of inhomogeneity/roughness in railway tracks
including variations in track-bed profile, foundation stiffness, sleeper spacing are given.
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The effect of spatial variation of track stiffness on the vibration of infinite beams on elastic foundation has been studied
by several authors, mostly with the use of perturbation techniques for relatively small variations. Mahmoud and Tawil [5]
analysed the quasi-static response of beams on random elastic foundation using truncated power series expansion of the
random displacements. Dynamic effects were later accounted for by Frýba et al. [6] who used a first-order perturbation
technique with stochastic finite elements to obtain the steady-state solution of an infinite beam on a random foundation
with uncertain damping, subjected to a constant moving force. The results, which are given in the form of variances of the
deflection and bending moment of the beam, show that the coefficient of variation of deflection is larger than that of the
bending moment at the point of application of the force, with randomness of the foundation stiffness being of greater
significance than the uncertainty in the damping. Andersen and Nielsen [7] analysed an infinite beam resting on a Kelvin
foundation with the inclusion of a shear layer and subjected to a moving SDOF vehicle. The spatial variation of the
foundation vertical stiffness is described by a stochastic homogeneous field consisting of small random variations around a
predefined mean value. A first-order perturbation analysis was proposed to establish the relationship between the variation
of the spring stiffness and the responses of the vehicle mass and the beam. The accuracy of this method, however, depends
on the speed of the vehicle as well as the degree of variation in the random track stiffness, with fairly poor results obtained
for speeds and stiffness variations over 30 percent. Verichev and Metrikine [8] studied the instability of a mass moving along
a beam that is supported on an inhomogeneous elastic foundation with periodically varying stiffness. Perturbation analysis
was used to obtain analytic expressions for the vibration conditions of the beam to become unstable. In all these cases, only
small variations in track stiffness and damping have been considered by the authors in order to guarantee the accuracy of
their solutions when making use of the perturbation technique. For example, in [6], the coefficients of variation in stiffness
and damping are kept small enough compared to unity; i.e. jεj51 and jγj51 respectively. The same assumption is also
emphasised in [8] where the small parameter μ51, for the same reason stated above. Also, most of these models only
considered variation in stiffness whereas the damping in treated as constant. However, large levels of inhomogeneity can be
present in railway track supporting structures; e.g. moving from one track type to another as from a ballasted track to a
bridge structure or vice versa.

Other methods have also been employed in studying beams on nonhomogeneous foundations. Pavlović and Wylie [9]
investigated the free vibration of a beam on Winkler foundation with linearly varying modulus along the beam span using a
power series approach. They concluded that the free response is mainly divided into two regions; up to a certain value of the
stiffness below which the response of the beam can be determined by averaging the linearly varying stiffness and adopting
equivalent homogeneous models and the region beyond this value in which this cannot be done. Wave propagation in a
beam on a Winkler foundation with random spatial variation of spring stiffness has been studied by Schevenels et al. [10]
with the focus on understanding the influence of correlation length. Their results show that even small spatial variations can
have an influence on the response at large distance from the source if the correlation length and the wavelength are of the
same order of magnitude.

Generally, there are two categories of methods used in solving the differential equation governing the dynamic
behaviour of a beam on elastic foundation. The first category is based on discretisation techniques such as the finite element
and finite difference methods carried out in the space–time domain, whereas the second group adopts transformation
techniques in the frequency and/or wavenumber domains; see e.g. Knothe and Grassie [11]. Advances in discretisation
methods have been immense with applications to solving beams on linear homogeneous foundations; see e.g. [12],
nonhomogeneous foundations; see e.g. [13,14], nonlinear foundations; see e.g. [15], etc. However, the applications of
frequency–wavenumber domain methods have been limited to linear homogeneous problems or periodically nonhomo-
geneous ones, see e.g. [16]. It is intended in this work to extend the applications of frequency–wavenumber domain
technique to incorporate other forms of nonhomogeneity in the differential equation.

In this paper, an alternative approach is proposed for analysing a beam on elastic foundation with nonhomogeneous
stiffness and damping under a moving harmonically excited mass. The method addresses some of the limitations of the
aforementioned methods as large levels of variation in both foundation stiffness and damping are considered. The effects of
nonhomogeneity on the beam response are analysed. In Section 2, the model is presented together with the generalised
differential equation describing the beam dynamic behaviour, and the proposed method of solution, involving the use of
Fourier sums is presented in Section 3. The method is applied to railway tracks with continuous elastic foundation with step
variation in properties in Section 4. Results are then presented in Section 5, including validation of the current method
against existing methods such as the Fourier transformation method for homogeneous parameters and also standard finite
elements approach in the space–time domain.

2. Model formulation

Fig. 1(a) shows an infinitely long Euler–Bernoulli beam supported on a continuous linear elastic foundation resting on a
rigid base. The vertical foundation stiffness and damping are modelled, using springs and dashpots respectively, as generally
nonhomogeneous in the spatial domain along the length of the beam. The beam is traversed by a vehicle, excited by an
oscillating load, at constant velocity in the direction shown.

The vehicle is represented only by a mass, assumed to be a simplification of a train in which only the unsprung part is
included, i.e. assuming the suspensions isolate the dynamics of the sprung components of the vehicle in the frequency range

S.G. Koroma et al. / Journal of Sound and Vibration 333 (2014) 2571–25872572



Download	English	Version:

https://daneshyari.com/en/article/287616

Download	Persian	Version:

https://daneshyari.com/article/287616

Daneshyari.com

https://daneshyari.com/en/article/287616
https://daneshyari.com/article/287616
https://daneshyari.com/

