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a b s t r a c t

This paper presents exact solutions for free vibration of rectangular cross-ply laminated
plates with at least one pair of opposite edges simply supported using refined kinematic
theories of variable order. Exact natural frequencies are obtained using an efficient and
unified formulation where the solving set of second-order differential equations of motion
and related boundary conditions are expressed at layer level in terms of so-called
fundamental nuclei having invariant properties with respect to the order of the plate
theory. The nuclei are then appropriately expanded according to the number of layers and
the order of the theory and the resulting equations are transformed into a first-order
model whose solution is obtained by using the state space concept. In this way, the
mathematical effort needed to derive analytical solutions is highly reduced. Both higher-
order equivalent single-layer and layer-wise theories are considered in this study.
Comparisons with other exact solutions are presented and useful benchmark frequency
results for symmetric and un-symmetric cross-ply laminates are provided.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Exact vibration analysis of structural elements like beams, plates and shells can be regarded as the theoretical foundation
of almost all approximate solution methods. Exact vibration solutions can be relevant for understanding the dynamic
response and performing quick parametric and optimization studies. Furthermore, they can serve as a valuable reference for
validating numerical methods on their convergence and accuracy and as a basis for developing advanced modelling
techniques such as the dynamic stiffness method and the superposition method [1].

By restricting the analysis to plate problems, mathematically exact solutions are typically available as closed-form
solutions and series solutions [2]. It is well known that the most common series solution for plates is the so-called Navier-
type solution. In 1820, Navier introduced a simple method for bending analysis of rectangular plates based on the expansion
of the displacement field and the load in a double trigonometric series which identically satisfies the boundary conditions of
the problem. Exact results can be obtained for specially orthotropic laminates with all edges simply supported [3]. As in the
case of bending, the same double Fourier series can be used for vibration and buckling problems.

It is also well known that exact solutions do exist for rectangular specially orthotropic laminates having one pair of
opposite edges simply supported and the remaining two edges having any possible combination of free, simple support or
clamped conditions [3]. In this case, the displacement is assumed to be expanded in a single trigonometric series along the
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direction normal to the pair of opposite simply supported edges. This form of solution is typically referred to as a Lévy-type
solution for both static and dynamic problems. However, as stated by Leissa [4], it was first used by Voigt for transverse
vibration analysis in 1893, six years before Lévy proposed the same type of solution for solving the plate bending problem.

Exact transverse and in-plane free vibration analysis of isotropic thin plates with at least two opposite edges supported
was first provided by Leissa [4] and Gorman [5], respectively. The remarkable work by Hashemi and Arsanjani [6] on
moderately thick plates using the Mindlin theory can be considered as a counterpart of that undertaken much earlier by
Leissa for thin plates. Exact vibration solutions of isotropic multi-span and stepped rectangular plates were presented by
Xiang and coworkers [7–10]. More recently, Voigt-type solutions for free transverse vibration of thick plates have also been
derived via the third-order shear deformation theory [11].

The first-known exact solutions for laminated plates having one pair of opposite simply supported edges are presented in
a series of papers by Khdeir, Reddy and Librescu [12–17]. Assuming a single series solution in one direction, the equations of
motion are transformed into a set of ordinary differential equations in the other direction. This set is further transformed
into a first-order state space model whose general solution is applied to the boundary conditions to obtain the natural
frequencies of the problem. Exact eigenfrequencies of symmetric cross-ply and antisymmetric angle-ply laminated plates
are generated using the classical lamination plate theory (CLPT), the first-order shear deformation theory (FSDT) and the
third-order shear deformation theory (TSDT) originally proposed by Vlasov for isotropic structures and then extended by
Reddy to composite plates and shells [18]. At a later stage, the same method has been applied to plates modelled according
to a second-order shear deformation theory [19] and a two-variable refined theory [20].

All the above-cited analytical works are based on two-dimensional (2-D) plate theories essentially built according to
a Newtonian approach, where the kinematic variables of the displacement model represent physical quantities like
translations, rotations and warping. They neglect plate thickness stretching and are simple enough to yield economical
models that could be handled rather easily by analytical techniques. However, they may introduce overly simplified
assumptions concerning the three-dimensional (3-D) kinematics of deformation of the plate. Indeed, multilayered
constructions are typically characterized by high transverse shear and normal deformation and by a displacement field
with discontinuous derivatives along the thickness direction (so-called zig–zag effect). Such complicating effects are
completely discarded or only approximately captured by FSDT and TSDT. The accuracy of Newtonian-based plate theories in
predicting the laminate vibration behavior is even worse when the thickness-to-length ratio of the plate increases and the
frequency range of interest widens.

Owing to the complex nature of the 3-D deformation of laminated plates, many refinements of FSDT have been proposed
in the literature to improve the accuracy of 2-D plate models without resorting to a cumbersome fully 3-D analysis. They are
typically referred to as refined or higher-order shear deformation theories [21–26] and belong to the class of theories
developed according to a Lagrangian approach, where each kinematic variable of the assumed displacement models can be
considered as a generalized coordinate without a direct physical meaning. Generally speaking, Lagrangian-based plate
theories can be classified as equivalent single-layer (ESL) models, where the classical FSDT displacement form is enriched
with higher-order terms as series expansion of the thickness coordinate, and layer-wise (LW) models, in which a different
displacement field is postulated in each layer and appropriate continuity conditions are enforced at each layer interface. The
number of expansion terms for each displacement variable included into the plate model is referred to as the order of the
theory.

The disadvantage of refined plate theories is the complexity of the resulting models, which are lengthy and tedious to
derive and difficult to solve by analytical methods. To the author's best knowledge, exact Voigt-type solutions based on
a refined theory have been obtained only recently by Boscolo [27]. In this work, free vibration of rectangular laminated
plates is solved using a first-order layer-wise theory. Exact eigenfrequencies are validated by comparison with available
analytical 3-D and 2-D Navier-type solutions. The approach developed in Ref. [27] is used by Boscolo and Banerjee [28]
within the framework of the dynamic stiffness method. Although the first-order layer-wise displacement model may suffer
from some limitations in terms of accuracy and efficacy, the effort is remarkable.

The aim of the present work is to present an efficient, unified and somehow automatic method to provide exact vibration
solutions of thin and thick cross-ply laminates with at least two opposite edges simply supported. It can be considered as
a generalization of what presented in Ref. [27]. The novel procedure introduced here overcomes the shortcomings of the
previous formulations which were limited to plate models derived from a single theory with fixed kinematics (i.e., fixed
order). Using the present approach, the solving equations must not be re-derived when a different order of the theory is
adopted and thus the mathematical effort needed to obtain analytical solutions is substantially reduced. In particular, both
two-dimensional ESL and LW theories of variable order are considered. As a result, a considerable number of new exact
frequency results are obtained which can be useful as benchmark solutions for future comparison.

2. Governing equations at layer level

2.1. Preliminaries

Consider an unloaded cross-ply laminated rectangular plate of length a, width b and thickness h (see Fig. 1). The plate
consists of Nℓ layers, which are assumed to be homogeneous and made of orthotropic material of mass density ρk. The kth
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