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a b s t r a c t

Complex pipelines may have various structural supports and boundary conditions, as
well as branches. To analyse the vibrational characteristics of piping systems, frequency
modelling and solution methods considering complex constraints are developed here. A
fourteen-equation model and Transfer Matrix Method (TMM) are employed to describe
Fluid–Structure Interaction (FSI) in liquid-filled pipes. A general solution for the multi-
branch pipe is proposed in this paper, offering a methodology to predict frequency
responses of the complex piping system. Some branched pipe systems are built for the
purpose of validation, indicating good agreement with calculated results.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fluid–Structure Interaction (FSI) describes an explicit coupling between moving fluid and deformable structure, in which
fluid acts on the structure with fluidic force whilst simultaneously the fluid is acted upon by movement of the structural
boundary. The FSI in a fluid-conveying pipeline can be induced by sudden opening or closing of a valve, sudden start-up or
shutdown of a pump, fluid flow ripples and mechanical excitation. This phenomenon has been found in a wide range of
fields, ranging from hydraulic and pneumatic fluid power systems, water supply systems, power production, petrochemical
industry, and even biological vessels. This paper is focused on the FSI in liquid-filled pipes, especially applied to hydraulic
piping systems of complex supports and spatial configurations.

Structural supports will affect the behaviour of a piping system significantly, changing the system’s natural frequencies.
In this paper, various boundary conditions and middle constraints are studied and included in the pipe system model.
Although models of straight, curved and T-shaped pipes have been studied previously, a more complicated system has not
yet been intensively researched. In the present work, a general solution of the multi-branch pipe system is proposed, and
experiments are carried out.

1.1. Literature of analytical model

Water hammer theory was developed in the 19th century, mostly based on the research of Joukowsky [1], who presented
the formula to predict the pressure change ΔP with the velocity change ΔV ,

ΔP ¼ ρf cfΔV (1)
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Although Joukowsky used the sound velocity which takes into account both the compressibility of the fluid and the
elasticity of the pipe walls [2], the expression was a one-way coupling excluding structural vibration. Wylie and Streeter [3]
and Cai [4] presented the impedance method, and the pipe elasticity was incorporated. It was simple and effective in
predicting behaviours of fluid transients, but still not in a coupled way.

The two-way coupling mechanism between the fluid transient and the movement of pipe wall has been defined as three
kinds of coupling [2,5,6]. Poisson coupling is due to the Poisson effect, in which an oscillatory pressure force results in radial
pipe wall dilation and hence axial strain and movement. Junction coupling takes place at changed boundaries, such as
elbows, valves, junctions and pipe ends due to the unbalanced pressure force acting on an area. Friction coupling is due to
shear stresses on pipe walls, and is generally considered less significant than the other two couplings.

Basic water hammer equations (two-equation model [2]) could be derived from the Navier–Stokes equation and the
continuity equation (Zielke [7]),

∂V
∂t

þ 1
ρf

∂P
∂z

¼ 0; (2)

∂V
∂z

þ 1
K
∂P
∂t

¼ 0: (3)

Skalak [8,9] later proposed four linear first-order partial differential equations (PDEs) for the two-way interaction, which
was also known as the four-equation model. Wiggert et al. [10] presented an axial four-equation model containing the
Poisson coupling, based on the work of Walker and Phillips [11]. The axial four-equation model was then widely used
and achieved good predictions of straight pipes [12–14] Zhang et al. [6] utilised the four-equation model to simulate the
vibration of a liquid-filled straight pipe in the frequency domain. Eight equations for a curved pipe had been obtained by
Davidson and Smith [15], extended by Valentin et al. [16] and Hu and Phillips [17], where Poisson and junction coupling
were taken into account.

A fourteen element vector was first used by Davidson and Samsury [18] and applied on the simulation of a pipeline
consisting of straight and curved pipes. Wilkinson [19] presented the 14-equation model where equations of motion were

Nomenclature

Uppercase letters

A cross-sectional area
E Young's modulus
F external force of constraints
G shear modulus
I flexure moment of inertia
J polar moment of inertia
K fluid bulk modulus
L length of pipe
P fluid pressure
T external moment of constraints
V fluid velocity
Y angular impedance of constraints
Z linear impedance of constraints

Lowercase letters

c wave speed
e thickness of pipe wall
f force in cross-section
m pipe moment or extra mass of constraints
r radii of pipe cross-section
u pipe displacement
z distance along the pipe
ρ density
ν Poisson's ratio
ψ pipe rotation displacement
φ angle between two adjacent coordinate

systems

Subscripts

e external excitation
f fluid
p pipe
i inner
o outer
x,y lateral coordinates
z axial coordinate

Superscripts

� Laplace transformed
T transposed

Matrices and vectors

A, B, C coefficient matrix of FSI model
D boundary matrix
I identity matrix
M field transfer matrix
N constraint matrix
Q excitation vector
R rotation matrix
T point transfer matrix of T-junction
ϕ state vector of 14 variables
0 zero vector/matrix
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