FISEVIER

Contents lists available at ScienceDirect

Journal of Sound and Vibration

journal homepage: www.elsevier.com/locate/jsvi

A study on waviness induced vibration of ball bearings based on signal coherence theory

Wentao Liu^a, Yun Zhang^a, Zhi-Jing Feng^a, Jing-Shan Zhao^{a,*}, Dongfeng Wang^b

- a Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China
- ^b Luo Yang Bearing Science & Technology Co. Ltd., Luoyang 471039, PR China

ARTICLE INFO

Article history: Received 19 November 2013 Received in revised form 13 June 2014 Accepted 26 June 2014 Handling Editor: M.P. Cartmell Available online 28 July 2014

ABSTRACT

This paper focuses on the effects of waviness on vibration of ball bearings. An experimental analysis method is developed by adopting signal coherence theory of multiple-inputs/single-output (MISO) system. The inputs are waviness excitations of the inner and outer races, and the output is vibration response of the outer ring. Waviness excitation signals are first derived from the manufacturing deviations, and found to be strongly coherent in low frequency range. Virtual input signals are then introduced by the method of orthogonalization. In both cases of vibration acceleration and speed responses, the cumulated virtual input—output coherence function verifies that the first peak region of vibration spectrum is mainly induced by the waviness excitations. In order to distinguish the contributions of the inner and outer races, coherence functions of the virtual inputs with real inputs are calculated, and the results indicate that the outer race waviness contributes more to vibration than the inner race waviness does in the example. Further, a multi-body dynamic model is constructed and employed to frequency response analyses. It is discovered that the waviness induced spectral peak frequency is close to the natural frequency of bearing.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Ball bearings are widely used in high speed machine tool spindles. For this kind of machine tool spindle, ball bearings act as not only the media but also the sources of vibration. Assuming that there are no assembly errors and the lubricant has no impurities, the causes of ball bearings induced vibration generally involve:

- (i) flexural deformation of outer ring,
- (ii) variable elastic compliance,
- (iii) geometry imperfections.

Flexural deformation of outer ring occurs due to the uniformly distributed contact loads on outer ring when the bearing is subjected to an axial external load, giving rise to a vibration frequency which is equal to ball passage frequency, that is, the cage rotational frequency multiplied by the number of balls [1]. The elastic compliance of ball bearings is time-variable because the angular position of balls, with respect to the radial load, continually changes with time, resulting in that the

^{*} Corresponding author. Fax: +86 10 62788308. E-mail address: jingshanzhao@mail.tsinghua.edu.cn (J.-S. Zhao).

Nomenclature		$u_{\text{or}}^{\text{x}}, u_{\text{or}}^{y}, u_{\text{or}}^{z}$ Vibration displacements of the outer ring in the x , y and z -directions	
_	A 1: t d	11 ^X 11 ^Y 11	λ_{ij} Vibration displacements of the <i>j</i> th ball in the
A	Amplitude of the first harmonic	u_{bj}, u_{bj}, u	x, y and z -directions
$C_{x_1x_2}$	Coherence function of the waviness excitation	V_i	Sum of the potential energy in the <i>j</i> th inner
cic	signals of outer race and inner race	\mathbf{v}_j	and outer contacts
$f_j^{ m ic}$	Excitation forces between the <i>j</i> th ball and the	VC	Coherence function of the virtual input signal
c0C	inner ring	VC_{yx1}	\tilde{x}_1 with the output signal
f_j^{oc}	Excitation forces between the <i>j</i> th ball and the	VC.	Coherence function of the virtual input signal
c7	outer ring	VC_{yx2}	
$f_{\rm or}^z$	Axial force preloaded on the outer ring	τα είς τα εος	\tilde{x}_2 with the output signal
f_{s1}	Equivalent sampling frequency of the outer	$W_j^{\rm ir}, W_j^{\rm or}$	Waviness of the inner and outer races
	race waviness excitation signal	<i>x,y,z</i>	Cartesian fixed global frame of reference
f_{s2}	Equivalent sampling frequency of the inner	Z	Number of the balls
	race waviness excitation signal	ω_b	Rotational speed of the balls relative to
$G_{x_1x_1}$	PSD of the outer race waviness excitation		the cage
	signal	ω_c	Revolution speed of the balls
$G_{x_2x_2}$	PSD of the inner race waviness excitation	$\omega_{ m ir}$	Rotational speed of the inner ring
	signal	$\omega_{\rm ni}$	Undamped natural frequencies
$G_{x_1x_2}$	CSD of two waviness excitation signals	$\phi_{ m or}^{\scriptscriptstyle X}$	Vibration angular displacement of the outer
I_{or}^{x}	Moment of inertia of the outer ring around the	ν	ring around the x-axis
	x-axis	ψ_{or}^{y}	Vibration angular displacement of the outer
I_{or}^{y}	Moment of inertia of the outer ring around the		ring around the <i>y</i> -axis
	y-axis	$ \varphi_j \\ \delta_j^{\text{ic}}, \delta_j^{\text{oc}} $	Tangential coordinate of the <i>j</i> th ball
$I_{\rm ir}^z$	Moment of inertia of the inner ring around the	$\delta_j^{\rm ic}, \delta_j^{\rm oc}$	The variable elastic deformations in the <i>j</i> th
	z-axis	da oa	inner and outer contacts
J_b	Moment of inertia of a ball	$\delta_{\mathrm{init}}^{\mathrm{ic}}, \delta_{\mathrm{init}}^{\mathrm{oc}}$	The stable elastic deformations in the <i>j</i> th inner
m_b	Mass of a ball		and outer contacts
n	Order of harmonics	γ_n	A number averagely distributed between 0
N	The maximum order of harmonics		and 2π
R_b	Radius of a ball	$\kappa_j^{\rm IC}, \kappa_j^{\rm OC}$	Coefficient of contact stiffness
$R_{ m ir}^{ m g}$	Curvature radius of the inner ring groove	f	Generalized force vector
$R_{ m or}^{ m g}$	Curvature radius of the outer ring groove	G	Cross-spectral matrix of the waviness excita-
R_p	Radius of the bearing's pitch circle		tion signals
S	Amplitude decay coefficient for the subse-	K	stiffness matrix
	quent wavenumbers	\mathbf{K}_d	Diagonalized stiffness matrix
S_j	Nonlinear terms in Eqs. (14) and (15), $j=1, 2$,	M	Mass matrix
	, 3Z+5	\mathbf{s}_i	modal vectors
$T_{\rm ir}$	Kinetic energy of the inner ring	$\overline{\mathbf{s}}_i$	Normalized modal vectors
$T_{ m or}$	Kinetic energy of the outer ring	S	Modal matrix
T_b	Total kinetic energy of the balls	u	Generalized coordinate vector
		V	Modal coordinate vector

vibration frequency also equals ball passage frequency [2,3]. Geometry imperfections can be classified into two categories, one of which is the local defect in balls and inner and outer races such as cracks, pits and spalls which surely generate vibration in the ball-race's contacts [4–7], the other one is distributed defects such as waviness of the rolling contact surfaces, which can give rise to fluctuations continuously in the dynamic reaction of rolling contacts. Because of the irregularity of surface topography and interaction between two or more surfaces, the waviness induced vibration is much more complicated in practice.

In 1965, Tallian and Gustafsson [8] summarized the vibration frequencies generated by multi sets of special orders of waviness, but the results are valid only for the particular kind of mounting of the vibration tester used in the bearing industry. Yhland [9] presented a detailed analysis of waviness measurement and made a comparison between the theoretical and measured spectra of vibration. Meyer et al. [10] found that the lack of roundness of races generates sidebands around a series of "normal" tones, and the frequency difference is proportional to the number of wave. Rahnejat and Gohar [11] performed a numerical solution for the vibration response of a rotating rigid shaft subjected to the inner race waviness of bearings, obtaining that a response frequency equaling the shaft speed times the number of waves is significant in addition to the ball passage frequency. Wardle [12,13] and Lynagh et al. [14] developed more general analytical expressions of the vibration forces and moments in bearings, obtaining the principal frequencies resulted from the waviness

Download English Version:

https://daneshyari.com/en/article/287871

Download Persian Version:

https://daneshyari.com/article/287871

<u>Daneshyari.com</u>