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a b s t r a c t

This paper introduces a formalism which extends that of “Green's function” and that of
“the Volterra series”. These formalisms are typically used to solve, respectively, linear
inhomogeneous space–time differential equations in physics and weakly nonlinear time-
differential input-to-output systems in automatic control. While Green's function is a
space–time integral kernel which fully characterizes a linear problem, the Volterra series
expansions involve a sequence of multi-variate time integral kernels (of convolution type
for time-invariant systems). The extension proposed here consists in combining the two
approaches, by introducing a series expansion based on multi-variate space–time integral
kernels. This series allows the representation of the space–time solution of weakly non-
linear boundary problems excited by an “input” which depends on space and time.

This formalism is introduced on and applied to a nonlinear model of a damped string
that is excited by a transverse mass force f ðx; tÞ. The Green–Volterra kernels that solve the
transverse displacement dynamics are computed. The first-order kernel exactly corre-
sponds to Green's function of the linearized problem. The higher order kernels satisfy a
sequence of linear boundary problems that lead to (both) analytic closed-form solutions
and modal decompositions. These results lead to an efficient simulation structure, which
proves to be as simple as the one based on the Volterra series, that has been obtained in a
previous work for excitation forces with separated variables f ðx; tÞ ¼ ϕðxÞf totðtÞ. Numerical
results are presented.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Sound synthesis based on physical models makes use of dynamical models of resonators that must be accurate enough to
be realistic. Many models are available for strings, plates, pipes (see e.g. [1–10]). In addition to basic (conservative) wave
propagation, these models include some relevant second-order phenomena such as nonlinearities that are responsible for
the timbre variation with respect to the nuance (from pp to ff) and damping.

In this context, simulation methods are also an important issue. The Volterra series formalism [11] provides a
convolution-type solution for “weakly nonlinear systems”, from which simple simulation structures can be derived
and are available for bounded input signals. More precisely, it extends linear filtering (impulse response and transfer
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function) to the case of systems with distortions, the dynamics of which can be represented by a sum of multiple
convolutions (multi-variate kernels and transfer kernels). For this reason, this tool has been widely used in e.g. signal
processing, automatic control, electronics, mechanics (see e.g. [12–20]).

In a previous work [21], a nonlinear equation of a damped string has been solved using the Volterra series in the case
where the string is excited by a force ftot(t) which is spatially distributed by a time-invariant function ϕðxÞ. Thus, a time-
domain simulation of the transverse displacement uðx; tÞ has been derived from the truncated series, which provides
accurate results for all signal input ftot(t) with sufficiently small amplitudes. In practice, for sound synthesis issues (bowed
string, pinched string, etc), the main limitation of this solution is due to the time-invariance of the spatial distribution ϕ. In
the linear case, for a general space–time transverse mass force f ðx; tÞ, this problem is solved by using Green's function which
fully characterizes the considered system.

In this paper, we introduce a “Green–Volterra” formalism which extends both that of “Green's function” and that of “the
Volterra series”. Applying this formalism to the string allows one to compute its dynamics whatever the excitation force
f ðx; tÞ may be. The solution is given by a series expansion composed of space–time integrals involving the (computable)
“Green–Volterra” kernels. The first term of the series expansion exactly corresponds to Green's function solution. Higher
order terms introduce nonlinear dynamics contributions.

The paper is organized as follows. Section 2 introduces the nonlinear string model. It recalls results based on Green's
function for the linearized problem (Section 2.2) and based on the Volterra series for a particular class of excitations
(Section 2.3). Section 3 introduces the formalism of Green–Volterra series. Then, this formalism is used to solve the original
problem in Section 4. A simulation is deduced in Section 5. Finally, Section 6 develops conclusions and perspectives.

2. Problem statement

2.1. Model under consideration

Consider the dimensionless nonlinear Kirchhoff model of the transverse vibrations of a damped string [2] excited by a
force f distributed on Ω¼ �0;1½ given by, for all ðx; tÞAΩ� Rþ ,

∂2t uðx; tÞþ2α∂tuðx; tÞ� 1þε

Z
Ω
ð∂xuðx; tÞÞ2 dx

� �� �
∂2xuðx; tÞ ¼ f ðx; tÞ; (1)

with Dirichlet boundary conditions and zero initial conditions

8t40; uðx¼ 0; tÞ ¼ 0 and uðx¼ 1; tÞ ¼ 0; (2)

8xAΩ; uðx; t ¼ 0Þ ¼ 0 and ∂tuðx; t ¼ 0Þ ¼ 0: (3)

Coefficients ε and α are positive. They quantify the effects of the nonlinearity (due to the variation of tension) and of the fluid
damping (due to viscosity, see e.g. [22, p. 194]).

2.2. Linearized problem: Green's function solution

The linearized version of (1)–(3) is obtained for ε¼ 0. It has the form

Lx;t ½u� ¼ f ; (4)

where Lx;t is the linear differential operator ∂2t þ2α∂t�∂2x over the domain ðx; tÞAΩ� Rþ associated with Dirichlet boundary
conditions and zero initial conditions. This standard well-posed problem has been extensively studied.

In general, boundary linear problems governed by Eq. (4) can be solved using Green's function formalism [23,24] (see
also e.g. [22,25] for applications in musical acoustics): the solution is the superposition of all local contributions of f, given by
the integral

uðx; tÞ ¼
Z
Ω�Rþ

gðx; t; ξ; τÞf ðξ; τÞ dξ dτ; (5)

where Green's kernel g denotes the solution of Eq. (4) excited by the Dirac pulse centered at ðξ; τÞ, that is,
f ðx; tÞ ¼ ½δξ � δτ�ðx; tÞ ¼ δðx�ξÞδðt�τÞ; (6)

where � denotes the tensor product of two distributions [26, Chapter 3.1].
Note that this problem is time invariant but not space invariant so that gðx; t; ξ; τÞ ¼ gðx;0; ξ; τ�tÞ. Indeed, denote by T ðτ;ξÞ

the translation operator of duration τ and length ξ. If (f,u) is a solution, it appears that ðT ðτ;0Þf ; T ðτ;0ÞuÞ is also a solution (time-
invariance), because T ðτ;0Þ commutes with all the operators of the partial differential equation, whereas ðT ð0;ξÞf ; T ð0;ξÞuÞ is not.
Hence, Eq. (5) becomes a convolution w.r.t. time, that is,

uðx; tÞ ¼
Z
Ω�Rþ

gðx; ξ; τÞf ðξ; t�τÞ dξ dτ where gðx; ξ; τÞ ¼ gðx;0; ξ; �τÞ:

denotes the convolution-type Green's kernel.

D. Roze, T. Hélie / Journal of Sound and Vibration 333 (2014) 2073–20862074



Download English Version:

https://daneshyari.com/en/article/287897

Download Persian Version:

https://daneshyari.com/article/287897

Daneshyari.com

https://daneshyari.com/en/article/287897
https://daneshyari.com/article/287897
https://daneshyari.com

