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of the plate is discretized in the finite element sense, while the direction of propagation
is described analytically. This leads to a standard eigenvalue problem for the calculation
of wave numbers. The proposed method is not limited to homogeneous plates. Multi-
layered composites as well as structures with continuously varying material parameters
in the direction of thickness can be modeled without essential changes in the
formulation. Higher-order elements have been employed for the finite element
discretization, leading to excellent convergence for complex structures. It is shown by
numerical examples that this method provides highly accurate results with a small
number of nodes while avoiding numerical problems and instabilities.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last decades, Lamb waves, theoretically described in 1917 [1], have gained attention as a promising tool in
non-destructive testing and structural health monitoring. Many attempts have been made to utilize Lamb waves for defect
detection in large plates [2,3]. However, as Lamb wave modes are highly dispersive, they lead to complex signal
interpretation, thus limiting practical applications. Additionally, the number of propagating modes depends on the
excitation frequency and plate thickness as well as the material parameters. General remarks on the dispersion properties
of Lamb waves can be found in [4].

Dispersion curves can be measured and compared with theoretical data to obtain the thickness variation of a plate or its
material constants [5-7] and anisotropy effects [8,9] of plates. Concurrently, techniques have been studied to remove the
effect of dispersion in structural health monitoring [10,11] and inspection [12-14] applications. Group velocity dispersion
has been assessed using time-frequency analysis [15]. For all applications the accurate theoretical prediction of dispersion
characteristics is essential.

For the case of a homogeneous plate of constant thickness, the dispersion curves can directly be obtained analytically,
as described in detail in [16]. However, since similar guided waves can be used for complex structures, such as layered
composites [17,18] and functionally graded materials, a general approach to obtain dispersion properties is desirable.

* Corresponding author. Tel.: +49 30 8104 4289.
E-mail address: hauke.gravenkamp@bam.de (H. Gravenkamp).

0022-460X/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j,jsv.2012.01.029


www.elsevier.com/locate/jsvi
www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2012.01.029
mailto:hauke.gravenkamp@bam.de
dx.doi.org/10.1016/j.jsv.2012.01.029

2544 H. Gravenkamp et al. / Journal of Sound and Vibration 331 (2012) 2543-2557

Early approaches include the calculation of a lumped mass matrix of a layered structure to obtain dispersion relations
of Rayleigh waves [19]. The discretization of structures with thin layers has led to eigenvalue problems to calculate of
dispersion relations [20,21]. This so-called thin-layer method has also been applied to assess the impulse response of
layered media in the time domain [22] and for the analysis of piezo-composite layers [23]. Stiffness methods have been
used to obtain approximate dispersion equations of layered media [24] and, more recently, for the characterization of
multidirectional composites [25].

The transfer matrix method [26,27] analytically describes the wave propagation in every layer of a multi-layered
structure and thus can be used for the calculation of dispersion curves. Based on this idea, the global matrix method
[28,29] has been developed to avoid the numerical problems mainly encountered at high frequency-thickness products in
the transfer matrix method. The matrix methods have been extended to anisotropic cases [30] and successfully applied to
the calculation of dispersion curves in orthotropic plates [31]. Matrix methods are discussed in [32]. Applications of these
methods include the calculation of dispersion characteristics of different multi-layered structures [33-36]. The
commercial software disperse [37], used for calculating dispersion relations for plates and cylinders and the free tool
PCDISP [38], used for cylindrical waveguides make use of these matrix methods. Recently, a different approach utilizing the
Green’s matrix and applying Fourier transformation to derive a boundary problem for ordinary differential equations has
been used to describe oscillation in multi-layered anisotropic composites [39].

To calculate the dispersion properties of plates with continuously varying material properties in the thickness direction,
a power series technique has been employed to derive approximate analytical solutions [40].

In contrast to the analytical approaches previously mentioned, purely numerical methods have been applied to obtain
dispersion curves for complex structures. These approaches are of interest especially when waveguides of arbitrary cross-
section are to be studied rather than plates. Dispersion curves can, in some cases, be obtained using standard Finite
Element software by discretizing a representative part of a three-dimensional waveguide [41]. In a different approach, a
unit length section of a three-dimensional waveguide is assessed, reducing the problem to a two-dimensional mesh [42].

Wave propagation in composite plates has been studied by applying the Finite Element as well as the Boundary
Element Method [43]. Dispersion curves have been obtained by discretizing only the through-thickness direction of the
composite with linear or quadratic elements, leading to a quadratic eigenvalue problem for the wavenumbers for a given
frequency. Similarly, wave propagation in anisotropic laminated strips [44], thin walled waveguides [45] and damped
waveguides of arbitrary cross-section have been studied [46] by discretizing the cross-section only. This approach is also
used in the so called semi-analytical finite element (SAFE) method which is based on [47] and [48] and has been applied to
composite plates [49,50], anisotropic composite cylinders [51,52], axisymmetric damped waveguides [53], as well as rods
and rails [54]. The software GUIGUW [55], which uses a SAFE formulation, is under development and free demo versions
are already available. Recently, significant extensions of the SAFE formulation have been published for the computation of
the transient response [56,57].

Additionally, special formulations have been employed for cylindrical waveguides of functionally graded materials [58]
and functionally graded piezoelectric plates [59], assuming the material properties vary linearly within each element. This
formulation has been extended to cylinders of piezoelectric materials [60].

In this paper the formulation of the Scaled Boundary Finite Element Method (SBFEM) is applied for the calculation of
dispersion characteristics in plate structures. Generally, the SBFEM is a semi-analytical method and requires discretization of
the boundary only [61,62]. It is advantageous in modeling wave propagation, especially in cracked structures [63]. For the
present application the procedure can be simplified to the discretization of a single straight line. The plate can consist of an
arbitrary number of layers or a material with continuously varying elastic parameters. This new approach leads to a quadratic
eigenvalue problem for the calculation of wave numbers, similar to those obtained by the so-called SAFE formulations
previously mentioned. In this work, a standard eigenvalue problem has been derived by solving for both displacements and
nodal forces simultaneously, significantly decreasing computational costs in comparison with the polynomial eigenvalue
problem. For the discretization of the through-thickness direction higher-order spectral elements have been employed in this
work. This drastically reduces the number of nodes required to obtain accurate solutions in comparison with linear or quadratic
elements used in previous work. The use of spectral elements additionally reduces the number of non-zero entries in the
eigenvalue problem. Consequently, the solution can be obtained very efficiently even for comparably high frequencies. This
method is particularly advantageous for complex functionally-graded materials. The application of higher-order elements
allows the material properties to be described by complex functions (e.g. polynomials up to the same order as the element
shape functions) with a small number of nodes in comparison with linear or quadratic elements.

The paper is organized as follows. The next section describes the governing equations and the scaled boundary
formulation for this particular problem of wave propagation in plates. In Section 3, the use of high-order elements is
summarized. Thereafter, several implementation considerations are explained in Section 4. In Section 5 numerical
examples for different plate structures are compared with analytical solutions and different numerical results presented in
the literature. A conclusion of the present work is given in Section 6.

2. Scaled Boundary Finite Element formulation for propagating modes in plates

The plate of constant thickness h shown in Fig. 1 is addressed. Without loss of generality the y-coordinate of a Cartesian
coordinate system is chosen along the through-thickness direction of the plate while the x-coordinate is parallel to the
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