Atherosclerosis 203 (2009) 587-592

Contents lists available at ScienceDirect

Atherosclerosis

journal homepage: www.elsevier.com/locate/atherosclerosis

Low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol and the incidence of cardiovascular disease in an urban Japanese cohort study: The Suita study

Tomonori Okamura^{a,*}, Yoshihiro Kokubo^a, Makoto Watanabe^a, Aya Higashiyama^a, Yoshihiro Miyamoto^b, Yasunao Yoshimasa^b, Akira Okayama^c

^a Department of Preventive Cardiology, National Cardiovascular Center, 5-7-1, Fujishiro-dai, Suita, Osaka 565-8565, Japan

^b Department of Atherosclerosis and Diabetes, National Cardiovascular Center, Osaka, Japan

^c The First Institute for Health Promotion and Health Care, Japan Anti-tuberculosis Association, Tokyo, Japan

ARTICLE INFO

Article history: Received 27 May 2008 Received in revised form 20 July 2008 Accepted 21 July 2008 Available online 26 July 2008

Keywords: Low-density lipoprotein cholesterol Non-high-density lipoprotein cholesterol Myocardial infarction Stroke Cohort studies

ABSTRACT

Objective: Only a small number of population-based cohort studies have directly compared the predictive value of low-density lipoprotein cholesterol (LDL-C) and non-high-density lipoprotein cholesterol (non-HDLC) for coronary artery disease in Asian populations, such as Japan.

Methods: We performed an 11.9-year cohort study of 4694 men and women, aged 30–74 years, selected randomly from an urban general population in Japan. Baseline LDL-C levels were estimated using the Friedewald formula. The predictive values of LDL-C and non-HDLC for myocardial infarction (MI) and stroke were compared.

Results and conclusion: During the follow-up period, there were 80 incident cases of MI and 139 of stoke, comprised of 23 intracerebral hemorrhages, 85 cerebral infarctions and 31 other types of stroke. The Hazard ratio (HR) for MI was highest in the top quintile of LDL-C (HR: 3.03, 95% CI, 1.32–6.96) when male and female data were combined. The HR for MI was also highest in the top quintile of non-HDLC (HR: 2.97, 95% CI, 1.26–6.97). Analysis of trends showed a significant positive relationship between MI incidence and serum LDL-C and non-HDLC levels (both P=0.02). However, there was no relationship between the incidence of any subtype of stroke and either LDL-C or non-HDLC. The predictive value of LDL-C and non-HDLC for MI, assessed by calculating the differences in the -2 logarithm likelihood ($-2 \ln [L]$) and area under the curve (AUC), were almost similar.

© 2008 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The causal relationship between high levels of serum lowdensity lipoprotein cholesterol (LDL-C) and coronary artery disease (CAD) is well established [1–5]. Blood LDL-C levels are therefore the main target for lipid management in the majority of guidelines of developed countries for preventing atherosclerotic disease [3–5]. Some US cohort studies have also suggested that non-high-density lipoprotein (non-HDLC) may be a better predictor of CAD [6,7]. However, to our knowledge, only one population-based cohort study has directly compared the predictive value of these lipid markers for CAD in an Asian population [8], which have a lower incidence of coronary artery disease, but a higher risk of stroke than Western populations [9–12]. Furthermore, although it has not

^{*} Corresponding author. Tel.: +81 6 6833 5012x2228/2188; fax: +81 6 6833 5300. *E-mail address*: okamurat@hsp.ncvc.go.jp (T. Okamura). been shown that there is a positive relationship between the risk of any type of stroke and high serum levels of total cholesterol (TC) in the Japanese population [9,10], the effects on stroke incidence of the closely related lipid fractions, LDL-C and non-HDLC, have not been evaluated.

The purpose of this study was therefore to investigate the predictive value of LDL-C and non-HDLC for the incidence of CAD and stroke in a Japanese urban population over an 11.9-year period. Our *a priori* hypothesis was that both LDL-C and non-HDLC may be useful predictors of CAD risk, but not of stroke risk.

2. Methods

2.1. Populations

The Suita study [13,14], a cohort study of cardiovascular disease, was established in 1989 and included 12,200 Japanese urban residents of Suita City, Osaka. The participants, aged 30–79 years,

^{0021-9150/\$ –} see front matter @ 2008 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.atherosclerosis.2008.07.020

were selected randomly from the municipality population registry. Of these, 6485 men and women had a baseline medical examination at the National Cardiovascular Center between September 1989 and March 1994 (participation rate: 53.2%). Of the 6485 participants, a total of 1791 were excluded for the following reasons: past history of coronary heart disease or stroke (n=208), nonperiodical participation in baseline survey (n=79), aged 75 or older (n=343), non-fasting visit (n=153), use of lipid-lowering agents such as statins (n=106), serum triglyceride \geq 4.5 mmol/l (400 mg/dl) (n=98) and missing information at the baseline survey or lost to follow-up (n=804). The data of the remaining 4694 participants (2169 men and 2525 women) were then analyzed. Informed consent was obtained from all participants. This cohort study was approved by the Institutional Review Board of the National Cardiovascular Center.

2.2. Baseline examination

Blood samples were collected at the National Cardiovascular Center (NCVC) after the participants had fasted for at least 12 h. The samples were centrifuged immediately and a routine blood examination that included serum total cholesterol (TC), HDL cholesterol, triglyceride and glucose levels then carried out. LDL-C was estimated using the Friedewald formula [15]. Non-HDLC was calculated by subtracting HDL-C from TC.

Blood pressures were measured in triplicate on the right arm in the seated position after 5 min rest by well-trained physicians using a standard mercury sphygmomanometer. The average of the second and third measurements was used in the analyses. Hypertension was defined as either a systolic blood pressure \geq 140 mmHg, a diastolic blood pressure \geq 90 mmHg or the use of antihypertensive agents. Diabetes was defined as a fasting serum glucose \geq 7.0 mmol/l (126 mg/dl), the use of anti-diabetic agents, or both. Height in stockings and weight in light clothing were measured. Public health nurses obtained information on the smoking, drinking and medical histories of the participants.

2.3. Endpoint determination

The participants were followed until December 31, 2005. The first step in the survey involved checking the health status of all participants by repeated clinical visits every 2 years and yearly questionnaires sent by mail or conducted by telephone. Informed consent for review of in-hospital medical records was obtained from 86.2% participants who were suspected of having had a myocardial infarction (MI) or stroke. The medical records were reviewed by registered hospital physicians or research physicians who were blinded to the baseline information.

The criteria for definite and probable MI were defined according to the criteria of the MONICA (Monitoring Trends and Determinants of Cardiovascular Disease) project [16], which requires evidence from an electrocardiogram (ECG), cardiac enzymes and/or autopsy. Stroke was defined according to the National Survey of Stroke criteria [17], which requires the rapid onset of a constellation of neurological deficits lasting at least 24 h or until death. The strokes were classified as either ischemic stroke (thrombotic or embolic), intracerebral hemorrhage, subarachnoid hemorrhage or undetermined type. A definite stroke was defined by autopsy or on the basis of diagnostic imaging, such as computed tomography or magnetic resonance imaging.

Cases with typical clinical symptoms, detected in the clinical visit during follow-up surveillance, but without informed consent for an in-hospital medical records survey, were defined as possible MI or stroke. Furthermore, to complete the surveillance for fatal MI and stroke, we conducted a systematic search for death certificates. All death certificates in Japan are forwarded to the Ministry of Health, Welfare, and Labor and coded for National Vital Statistics. We classified fatal MI and stroke listed on the death certificate, but not registered on our surveillance system, as possible MI and stroke.

2.4. Statistical analysis

Sex-specific analysis was performed. We set the cut-off points for serum LDL-C and non-HDLC according to the quintile ranges. For baseline characteristics, analysis of variance for means or Chisquare tests for proportions were used. The multivariable-adjusted hazard ratio (HR) of LDL-C and non-HDLC for MI or stroke was calculated using proportional hazards model adjusted for age, hypertension, diabetes, HDL-C, body mass index (BMI), smoking (never-smoked; ex-smoker; current smoker) and drinking (neverdrank; ex-drinker; regular drinker). Sex-combined analysis with further adjustment for sex was also carried out.

Separate models with LDL-C or non-HDLC levels as ordinal variables (median of LDL-C or non-HDLC quintile) were fitted to the other risk factor adjusted models (test for trend). The differences between the -2 logarithm likelihood ($-2 \ln [L]$) in each lipid added model and the $-2 \ln [L]$ in other risk factor adjusted models were calculated. These differences had an approximate χ^2 distribution with 1 d.f. These χ^2 values assess which lipid had the greatest predictive value in other risk factor adjusted models. The ability to predict which people developed cardiovascular disease was also assessed by calculating the area under the receiver-operating characteristic (ROC) curve (AUC). This curve showed the predictive probability of the variables using logistic regression analysis and the same covariates used in the multivariable model of test for trend. Furthermore, the predictive values of the ratio of LDL-C to HDL-C (LDL-C/HDL-C) and the ratio of non-HDLC to HDL-C (non-HDLC/HDL-C) for myocardial infarction (MI) and stroke were also compared.

All confidence intervals were estimated at the 95% level and significance was set at a *P* value of <0.05. The Statistical Package for the Social Sciences (SPSS Japan Inc. version 15.0J, Tokyo, Japan) was used for all the analyses.

3. Results

The mean and standard deviation of serum LDL-C in the baseline survey was $3.23 \pm 0.82 \text{ mmol/l} (124.9 \pm 31.7 \text{ mg/dl})$ in men and $3.49 \pm 0.90 \text{ mmol/l} (134.8 \pm 34.9 \text{ mg/dl})$ in women. The mean baseline serum non-HDLC was $3.90 \pm 0.89 \text{ mmol/l} (151.1 \pm 34.5 \text{ mg/dl})$ in men and $4.01 \pm 1.01 \text{ mmol/l} (155.2 \pm 39.1 \text{ mg/dl})$ in women.

Table 1 shows the baseline characteristics of the participants in each LDL-C quintile. In both sexes, there were significant differences in the mean values for age, non-HDLC, HDL-C and BMI. These variables, with the exception of HDL-C, tended to be higher in the higher LDL-C groups. Serum HDL-C levels were lower in the higher LDL-C groups. There was no significant difference in the prevalence of hypertension and diabetes in the quintiles for men, whereas the prevalence of these conditions in women was higher in the higher LDL-C groups. In both sexes, the proportion of current drinkers was lower in the higher LDL-C groups, whereas the proportion of current smokers was highest in the lowest LDL-C group. The relationships between non-HDLC quintiles and the above-mentioned baseline characteristics were almost similar (data not shown in the table).

The total person-years studied was 56,196 (25,420 for men and 30,776 for women), with a mean follow-up period of 11.9 years. During the follow-up period, there were 80 incident cases of MI (41 definite and 39 probable MIs) and 139 of stoke (102 definite and 37

Download English Version:

https://daneshyari.com/en/article/2893743

Download Persian Version:

https://daneshyari.com/article/2893743

Daneshyari.com