Translational Molecular Nuclear Cardiology

James T. Thackeray, PhD*, Frank M. Bengel, MD

KEYWORDS

• PET • SPECT • Cardiovascular disease • Translational imaging

KEY POINTS

- Established translational nuclear imaging agents target critical and common molecular pathways of cardiac pathologies.
- Translational strategies are essential for effective identification and characterization of highpotential candidate tracers.
- The characterization of translational imaging compounds should strive to achieve reliable quantification, demonstrate diagnostic and/or prognostic benefit, and allow for monitoring therapeutic efficacy.

INTRODUCTION

The widespread expansion of dedicated small animal imaging systems has provided a research framework for the accelerated development of novel molecular nuclear imaging agents. Current tracers target a number of critical axes in the development and progression of cardiovascular disease, including myocardial metabolism, sympathetic neuronal activation, local and systemic inflammation, molecular biomarkers of ventricular and vascular remodeling, and monitoring of regenerative therapy. Some of these imaging agents have been approved for routine clinical application (Box 1). Other novel compounds remain under investigation, at variable stages of translation from lab bench to clinical evaluation (Box 2). There remain a number of challenges to wider clinical deployment of novel radiotracers and imaging techniques, particularly (1) absolute, reliable, and reproducible quantification; (2) demonstration of added diagnostic and/or prognostic value for risk stratification; and (3) capacity to measure disease progression and regression to therapy. Here, we discuss the current state of preclinical nuclear molecular imaging research and translation to clinical practice.

MYOCARDIAL METABOLISM

The preeminent test case of molecular imaging is the diagnostic and prognostic application of positron emission tomography (PET) with fludeoxyglucose F 18 (¹⁸F-FDG) to assess myocardial glucose metabolism. More thorough metabolic analyses incorporate tracers of fatty acid metabolism, such as ^{99m}Tc-β-methyl-iodophenylpentadecanoic acid (^{99m}Tc-BMIPP, fatty acid transport), ¹⁸F-fluoro-6-thia-heptadecanoic acid (¹⁸F-FTHA, nonesterified fatty acid transport), ¹¹C-palmitate (β-oxidation), and ¹¹C-acetate (oxidative metabolism).

There remain challenges for the absolute quantification of glucose utilization in mice and rats, particularly with regard to accurate calculation of the input function.^{1,2} In mice, this complication is accentuated and can contribute to suboptimal image reproducibility and high population variability. A number of hybrid analysis approaches have been proposed,^{3–5} but true quantification of

Conflict of Interest: The authors declare that they have no conflict of interest.

* Corresponding author.

E-mail address: Thackeray.James@mh-hannover.de

Cardiol Clin 34 (2016) 187–198 http://dx.doi.org/10.1016/j.ccl.2015.08.004 0733-8651/16/\$ – see front matter © 2016 Elsevier Inc. All rights reserved.

Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Street 1, Hannover D-30625, Germany

Box 1 Established translational radiotracers in routine clinical practice	
Tracer	Target/Measurement
Myocardial metabolism	
¹⁸ F-FDG (fludeoxyglucose F 18)	Glucose uptake, metabolism Activated inflammatory cells, macrophages
^{99m} Tc-BMIPP (^{99m} Tc-β-methyl- iodophenylpentadecanoic acid)	Fatty acid uptake, metabolism
¹¹ C-Acetate	Oxidative metabolism
Myocardial innervation	
¹²³ I-MIBG (metaiodobenzylguanidine)	Norepinephrine reuptake and release
¹¹ C-Hydroxyephedrine	Norepinephrine reuptake and release
¹¹ C-Epinephrine	Norepinephrine reuptake, release, and metabolism
Other molecular targets	
¹⁸ F-Fluoride	Calcification, mineralization
¹¹ C-Methionine	De novo protein synthesis
^{99m} Tc-Annexin	Apoptosis

glucose utilization in the rodent heart remains somewhat elusive.

Due in part to limited accuracy of ¹⁸F-FDG kinetic quantification and complications due to continuous anesthesia, there has been a relative dearth of quantitative preclinical studies. More recent molecular metabolism imaging studies have focused on genetically modified animals,

Box 2 Novel translational radiotracers in preclinical and clinical testing		
Tracer	Target/Measurement	
Myocardial metabolism		
¹⁸ F-FTHA (¹⁸ F-fluoro-6-	Fatty acid uptake	
thia-heptadecanoic acid)	Eatty acid untake and evidation	
Myocardial innervation		
¹¹ C-Phenylephrine	Norepipephrine reuptake release and metabolism	
¹⁸ F-LMI1195	Norepinephrine reuptake and release	
¹¹ C-MQNB	Muscarinic receptors	
¹⁸ F-A85380	Nicotinic receptors	
¹¹ C-CGP12177	Beta-adrenergic receptors	
¹¹ C-CGP12388	Beta-adrenergic receptors	
¹¹ C-GB67	Alpha-adrenergic receptors	
Other molecular targets		
	Somatostatin receptor type 2, macrophages	
	Mannose receptor, glucose uptake	
Flastin shuge retain	Receptor for advanced glycation endproducts, glycation	
Elastin giycoprotein	Activated elastin, matrix remodeling	
¹⁸ E Eluorbotabir	Amyloid plaquos	
^{99m} Tc-RP782	Anyloid plaques Matrix metalloproteinases	
^{99m} Tc-RP805	Matrix metalloproteinases	
¹¹ C-KR31173	Angiotensin recentor type 1 (AT_4R)	
^{99m} Tc-CRIP	Arginine-glycine-aspartate (RGD) protein sequence, angiogenesis,	
	inflammation	
¹⁸ F-Galacto-RGD	RGD protein sequence, angiogenesis, inflammation	
⁶⁴ Cu-DOTA-vMIP-II	Chemokine receptors (nonspecific)	
⁶⁸ Ga-Pentixafor	Chemokine receptor CXCR4	
⁶⁸ Ga-SDF1	Chemokine receptor CXCR4	
¹⁸ F-FBzBMS	Endothelin receptors	
¹⁸ F-Fucoidan	P-selectin, thrombosis	
¹⁸ F-FXIII	Plasma transglutaminase factor XIII	

Download English Version:

https://daneshyari.com/en/article/2897748

Download Persian Version:

https://daneshyari.com/article/2897748

Daneshyari.com