
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 316 (2008) 274–297

The transition conditions in the dynamics
of elastically restrained beams

Ricardo Oscar Grossi�,1, Marı́a Virginia Quintana1

Facultad de Ingenierı́a, Universidad Nacional de Salta, Av. Bolivia 5150, 4400 Salta, Argentina

Received 21 May 2007; received in revised form 26 December 2007; accepted 14 February 2008

Handling Editor: P. Davies

Available online 2 April 2008

Abstract

This paper deals with the free transverse vibration of a non-homogeneous tapered beam subjected to general axial forces,

with arbitrarily located internal hinge and elastics supports, and ends elastically restrained against rotation and translation.

A rigorous and complete development is presented. First, a brief description of several papers previously published is

included. Second, the Hamilton principle is rigorously stated by defining the domain D of the action integral and the space

Da of admissible directions. The differential equations, boundary conditions, and particularly the transitions conditions,

are obtained. Third, the transition conditions are analysed for several sets of restraints conditions. Fourth, the existence

and uniqueness of the weak solutions of the boundary value problem and the eigenvalue problem which, respectively,

govern the statical and dynamical behaviour of the mentioned beam is treated. Finally, the method of separation of

variables is used for the determination of the exact frequencies and mode shapes and a modern application of the Ritz

method to obtain approximate eigenvalues. In order to obtain an indication of the accuracy of the developed mathematical

model, some cases available in the literature have been considered. New results are presented for different boundary

conditions and restraint conditions in the internal hinge.

r 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The calculus of variations is the oldest and most important root of functional analysis. Lagrange invented
the ‘‘operator’’ d and with its application a d-calculus which was viewed as a kind of ‘‘higher’’ infinitesimal
calculus. This discipline has attracted the attention of numerous eminent mathematicians, who made
important contributions to its development. In the last decades the interest in application of the techniques of
the calculus of variations has increased noticeably. This is partly due to the demands of the technology and the
availability of powerful computers.

Variational principles have always played an important role in theoretical mechanics. In 1717 Johann
Bernoulli presented the principle of virtual work and in 1835 Hamilton’s principle emerged. Particularly, this
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last principle provides a straightforward method for determining equations of motion and boundary
conditions of mechanical systems. Substantial literature has been devoted to the theory and applications of the
calculus of variations. For instance, the excellent books [1–3] present clear and rigorous treatments of the
theoretical aspects of the mentioned discipline. Several classical textbooks, [4–8] present formulations, by
means of variational techniques, of boundary value and eigenvalue problems in the statics and dynamics of
mechanical systems.

On the other hand, the study of vibration problems of beams with several complicating effects has received
considerable treatment. It is not possible to give a detailed account because of the great amount of
information, nevertheless some references will be cited. Excellent handbooks have appeared in the literature
giving frequency tables and mode-shape expressions [9,10]. Several investigators have studied the influence of
rotational and/or translational restraints at the ends of vibrating beams. A number of previous papers have
been published on uniform beams with elastically restrained ends [11–18]. Transverse vibrations of beams of
non-uniform cross sections have also been extensively investigated [19–27].

Also, the study on vibration of beams with intermediate elastic restraints has been performed by several
researchers. Rutemberg [28] presented eigenfrequencies for a uniform cantilever beam with a rotational
restraint at an intermediate position. Lau [29] extended Rutemberg’s results including an additional spring to
against translation. Rao [30] analysed the frequencies of a clamped–clamped uniform beam with intermediate
elastic support. De Rosa et al. [31] studied the free vibrations of stepped beams with intermediate elastic
supports. Arenas and Grossi [32] presented exact and approximate frequencies of a uniform beam, with one
end spring-hinged and a rotational restraint in a variable position. Grossi and Albarracı́n [33] determined the
exact eigenfrequencies of a uniform beam with intermediate elastic constraints. Wang [34] determined the
minimum stiffness of an internal elastic support to maximize the fundamental frequency of a vibrating beam.

A review of the literature further reveals that there is only a limited amount of information for the vibration
of beams with internal hinges. Ewing and Mirsafian [35] analysed the forced vibrations of two beams joined
with a nonlinear rotational joint. Wang and Wang [36] studied the fundamental frequency of a beam with an
internal hinge and subjected to an axial force. Chang et al. [37] investigated the dynamic response of a beam
with an internal hinge, subjected to a random moving oscillator. The aim of the present paper is to investigate
the natural frequencies and mode shapes of a beam with several complicating effects, intending the
development within each section to be rigorous and complete.
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Nomenclature

Ai(x) cross-sectional area of the ith span,
i ¼ 1,2

D(F) domain of functional F

Da(F) space of admissible directions
Di(x) ¼ Ei(x)Ii(x) flexural rigidity of the ith span
F(u) energy functional
f(x) distributed axial force
Kri, Kti, i ¼ 1,2 dimensionless rotational and

translational parameters
Krc, Ktc dimensionless rotational and transla-

tional parameters
Kr12 dimensionless rotational parameter
l length of the beam
mi(x) ¼ ri(x)Ai(x) mass per unit length of the ith

span
N the set of natural numbers
Rn n-dimensional Euclidean space
R the set of real numbers

r1, r2 rotational stiffness at the left and right
ends, respectively

rc rotational stiffness at the point x ¼ c

r12 rotational stiffness at the internal hinge
Si dimensionless axial force
T(x) axial load at abscissa x

Tb kinetic energy
t time
t1, t2 translational stiffness at the left and right

ends, respectively
tc translational stiffness at the point x ¼ c

U strain energy
x abscissa
x̄ dimensionless abscissa

l1;i ¼
ffiffiffiffiffiffiffiffiffiffiffi
m1

D1
o2

i
4

r
l dimensionless natural frequency

parameter
dF(u; v) variation of functional F

o radian frequency
ri(x) mass density of the ith span
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