

Contents lists available at ScienceDirect

Diabetes & Metabolic Syndrome: Clinical Research & Reviews

journal homepage: www.elsevier.com/locate/dsx

Original article

Impact of metabolic syndrome and its severity on microvascular complications in type 2 diabetes

Michel P. Hermans^{a,*}, K. Daniel Amoussou-Guenou^c, Sylvie A. Ahn^b, Michel F. Rousseau^b

^a Service d'Endocrinologie et Nutrition, Cliniques universitaires St-Luc, Université catholique de Louvain, Brussels, Belgium

^b Département de Cardiologie, Cliniques universitaires St-Luc, Université catholique de Louvain, Brussels, Belgium

^c Endocrinology and Metabolic Diseases Department, CNHU-HKM Cotonou, Benin

ARTICLE INFO	A B S T R A C T		
ARTICLEINFO Keywords: Type 2 diabetes Metabolic syndrome Microangiopathy Atherogenic dyslipidemia	Aims: It is much debated whether metabolic syndrome (MetS) is a predictor for microvascular disease in hyperglycemic states. Whether present scoring systems for MetS provide additional risk assessment knowledge related to the severity of the score (from 1/5 to 5/5) remains to be determined for macro- and microangiopathy. Moreover, atherogenic dyslipidemia (low HDL-C and high triglycerides), which provides 2 out of 5 identifying MetS components, is increasingly considered as an emerging risk factor for residual vascular risk. <i>Material and Methods:</i> We therefore analyzed a T2DM cohort (M:F ratio 63:37) with comparable age and diabetes duration with (MetS (+); $n = 593$) or without MetS (MetS ($-$); $n = 145$) regarding both macro- and microangiopathy prevalence and risk factors of both types of complications. MetS was defined according to AHA/NHLBI criteria. Blood pressure, glycemic control, insulin resistance (IR), hyperbolic product (B × S) and B × S loss rate, atherogenic dyslipidemia and low-grade systemic inflammatory markers were compared. We also determined whether there was a gradient for microangiopathy alongside MetS scores. <i>Results:</i> Mean MetS score was 1.8 in MetS ($-$) vs. 4.0 in MetS (+), with hypertension as paramount non-glycemic contributor in MetS ($-$). BMI, waist, relative/absolute fat mass, visceral fat, conicity and IR were all significantly increased in MetS (+). Current triglycerides levels were almost twice as high in MetS (+). Hypertension prevalence was twice higher in MetS (+) patients, who had increased systolic blood pressure by +7 mm Hg. Albuminuria was markedly elevated in MetS (+) and macroangiopathy in 17% of MetS ($-$), wis 36% of MetS ($+$), either as peripheral artery disease (PAD), coronary artery disease (CAD) and/or TIA (transient ischaemic attack/)stroke: 7, 10, and 5% (PAD, CAD, TIA/stroke) in MetS ($-$) vs. 11, 26, and 8% in MetS ($+$) (NS, $p < 0.0001$, and NS, respectively). Significant trends for increasing prevalence of all three types of microvascular complicatio		

1. Introduction

Current definitions of the metabolic syndrome (MetS) reckon that it both identifies a cardiometabolic phenotype associated with

insulin resistance (IR)/hyperinsulinemia and predicts incident cardiovascular (CV) disease and/or type 2 diabetes (T2DM) [1]. Since the vast majority (80–90%) of T2DM patients qualify for MetS, the usefulness of determining its presence in such a population with overwhelming MetS prevalence is debated. Establishing the presence of MetS may nevertheless further inform on residual vascular risk in cardiometabolic patients currently receiving standards of care [2]. It is much debated whether MetS is a predictor for microvascular disease in hyperglycemic states. In the Metascreen Study, MetS predicted incident microangiopathy in

^{*} Corresponding author at: Université catholique de Louvain, Division of Endocrinology and Nutrition, Avenue Hippocrate UCL 54.74, B-1200 Brussels, Belgium. Tel.: +32 02 764 54 75; fax: +32 02 764 54 18.

E-mail address: michel.hermans@diab.ucl.ac.be (M.P. Hermans).

^{1871-4021/\$ –} see front matter @ 2010 Diabetes India. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.dsx.2010.05.021

both T1DM and T2DM, being defined with IDF or AHA/NHLBI criteria [3]. In the DCCT study, IR also predicted microangiopathy [4]. By contrast, in the large UKPDS prospective trial in newlydiagnosed T2DM, MetS, whatever the definition used, was not an independent predictor for microvascular disease [5]. Lack of predictive value for microangiopathy of IDF-defined MetS was also reported in T2DM by Iwasaki et al. [6]. In order to better characterize the impact of MetS on microvascular disease, we analyzed a well-phenotyped T2DM cohort with (MetS (+)) or without MetS (MetS (-)) regarding both macro and microvascular disease prevalence, in the prospect of standard or emerging risk factors for both vascular complications, including IR, HOMA hyperbolic product $(B \times S)$ and $B \times S$ loss rate, glycemic control, atherogenic dyslipidemia and low-grade systemic inflammatory markers. We also determined whether there was a gradient for microangiopathy alongside MetS scores.

2. Patients and methods

The study design was cross-sectional and included 738 consecutive adult, >90% white Caucasian patients with T2DM defined according to the Expert Committee on the Diagnosis and *Classification of Diabetes* [7]. The presence of a metabolic syndrome (MetS) was defined according to AHA/NHLBI definition: presence (>3/5 criteria) or absence (1-2/5 criteria) [1]. Two groups were analyzed: a MetS (-) group (n = 145) vs. a MetS (+) group (n = 593)of comparable age and with similar diabetes duration. The following sociodemographic and clinical variables were recorded: age, gender, educational level (dichotomized as [low vs. high], based on higher achieved education degree [no education, primary or secondary vs. higher education and university]), age at diabetes diagnosis, known diabetes duration, family history (cardiovascular disease, T2DM), current medications (oral anti-diabetic drugs (OAD)), insulin, blood-pressure (BP)-lowering drugs, aspirin, lipidlowering drugs (LLD), weight, height, body mass index (BMI), body fat (four-limbs electrical bioimpedancemetry, BodyFat Analyser, Omron BF 500). Surrogates for estimating central adiposity were waist circumference and conicity index (waist circumference (m)/ $0.109 \sqrt{[weight (kg)/height (m)][8]}$.

Each subject underwent non-invasive combined assessment of insulin sensitivity and β -cell function using the Homeostasis Model Assessment (HOMA-2; http://www.dtu.ox.ac.uk), from triplicates means of fasting glucose and specific insulin levels obtained after an overnight fast and discontinuation of glucose-lowering or glucose-sentitizing therapies for 24 h (48 h in case of glargine or long-acting sulfonylureas). Values of HOMA-B (%) were plotted as a function of HOMA-S (%), defining a HOMA-product

Table 1

Patients' characteristics.

area $(B \times S)$ [unit: $\%^2$; normal value: 100%, corresponding to $10^4\%^2$], which represents the true, underlying β -cell function adjusted for individual insulin sensitivity. $(B \times S)$ loss over a subject's lifetime span was obtained by dividing $100 - (B \times S)$ by subjects' age at the time of HOMA-modeling, providing an estimate of annual $(B \times S)$ loss rate (B \times S LR; unit: % year⁻¹) [9–11]. Hypertension prevalence was defined as systolic BP > 140 mm Hg and/or diastolic BP > 90 mm Hg and/or current treatment with BP-lowering drug(s) prescribed for treating high BP. The presence of a peripheral neuropathy was based on clinical examination (knee and ankle reflexes, Semmes-Weinstein 5.07 monofilament test) and/or electromyography. Eye visual examinations by an experienced ophthalmologist and/or fluorescein angiography were performed to diagnose retinopathy. Regarding macroangiopathy, coronary artery disease (CAD) was defined by a well-documented medical history of myocardial infarction, angioplasty, stenting, revascularization surgery and/or significant coronary stenosis confirmed by angiography. Peripheral artery disease (PAD) was defined by a well-documented medical history of lower-limb(s) claudication and/or ischaemic diabetic foot, angioplasty, stenting, revascularization surgery and/or significant lower-limb artery stenosis confirmed by Doppler ultrasonography and/or angiography. Stroke was defined according to UK Prospective Diabetes Study (UKPDS) criteria, i.e. any neurological deficit with symptoms or signs lasting ≥ 1 month, with no distinction made between ischaemic, embolic and haemorrhagic strokes. In patients with multiple strokes, only the first event was considered for prevalence recording [12].

The following biological variables were measured: current HbA_{1c}, fasting lipids (total cholesterol (C), HDL-C, triglycerides; LDL-C was computed using Friedewald's formula, and non-HDL-C by subtracting HDL-C from total C), normo, microalbuminuria and proteinuria were defined as urinary albumin excretion <30 (normo-), 30–299 (microalbuminuria) and \geq 300 µg mg creatinine⁻¹ (proteinuria) from first-morning urine sample. Glomerular filtration rate (eGFR) was estimated using Cockcroft and Gault's formula [13].

3. Statistical methods

Results are presented as means (±1 SD) or as median [percentiles 25–75]. The significance of differences between means was assessed by Student's *t*-test or by alternate Welch's test for data sets with significant differences in SDs, and by Fisher's Exact test for differences in proportions. Chi² test for trend was also used to estimate the significancy of complication prevalence across MetS scores categories. Results were considered significant or non-significant (NS) for p <or ≥ 0.05 , respectively.

		MetS (-)	MetS (+)	р
n		145	593	
Age	years	66 (14)	66 (10)	-
Diabetes duration	years	13 (9)	13 (8)	-
Sex ratio (M:F)	%	77:23	63:37	0.0018
BMI	$kg m^{-2}$	24.5 (3.6)	30.8 (5.3)	< 0.0001
Waist	cm	91 (10)	107 (13)	< 0.0001
Fat mass	%	26 (7)	34 (8)	< 0.0001
Liver steatosis	%	31	75	< 0.0001
HOMA-S	%	75 (42)	46 (30)	< 0.0001
HOMA product $(B \times S)$	%	33.3 (18.5)	24.5 (16.1)	< 0.0001
HbA _{1c}	%	7.26 (1.39)	7.80 (1.52)	< 0.0001
Systolic blood pressure	mm Hg	135 (18)	142 (22)	< 0.0001
Hypertension	%	46	83	< 0.0001
eGFR	$ml min^{-1} 1.73 m^{2}$	81 (30)	89 (38)	0.0069
Albuminuria	$\mu g mg creatinine^{-1}$	28 (58)	107 (303)	<0.0001

Results are expressed as means (1 SD) or proportions (%). B: beta-cell function (HOMA); BMI: body mass (Quetelet's) index; eGFR: estimated glomerular filtration rate; F: female; HOMA: homeostatic model assessment; HOMA-S: insulin sensitivity; M: male; MetS: metabolic syndrome (AHA/NHLBI criteria).

Download English Version:

https://daneshyari.com/en/article/2910088

Download Persian Version:

https://daneshyari.com/article/2910088

Daneshyari.com