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Abstract

An approximate solution for the free vibration problem of two-dimensional magneto-electro-elastic laminates is
presented to determine their fundamental behavior. The laminates are composed of linear homogeneous elastic,
piezoelectric, or magnetostrictive layers with perfect bonding between each interface. The solution for the elastic
displacements, electric potential, and magnetic potential is obtained by combining a discrete layer approach with the Ritz
method. The model developed here is not dependent on specific boundary conditions, and it is presented as an alternative
to the exact or analytical approaches which are limited to a very specific set of edge conditions. The natural frequencies and
through-thickness modal behavior are computed for simply supported and cantilever laminates. Solutions for the simply
supported case are compared with the known exact solution for piezoelectric laminates, and excellent agreement is
obtained. The present approach is also validated by comparing the natural frequencies of a two-layer cantilever plate with
known analytical solution and with results obtained using commercial finite element software.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Magneto-electro-clastic laminates show significant interactions between the elastic, electric, and magnetic
fields due to the coupled nature of the constitutive equations. These laminates have direct application in
sensing and actuating devices, such as damping and control of vibrations in structures. There have been
several studies on the electric and mechanical behavior of piezoelectric laminates. Lee [1-4] published a series
of papers incorporating the piezoelectric effect into the classical laminate theory. Tzou and Gadre [5]
presented the dynamic equations for generalized multi-layered thin shells based on Love’s theory and
Hamilton’s principle. More recently, Heyliger [6] and Heyliger and Brooks [7] presented an exact solution for
the static behavior of laminated piezoelectric plates with simple supports. Heyliger and Brooks [§] also
obtained the exact solution for the free vibration behavior of piezoelectric plates in cylindrical bending, by
extending the free vibration solution of purely elastic simply supported plates to the corresponding
piezoelectric case.
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Research on the behavior of magneto-electro-elastic laminates is relatively recent. Problems involving
magneto-electro-elastic media have been considered by Harshe [9], Nan [10], and Benveniste [11] by
developing expressions to determine the effective magnetoelectric effect in composites having piezoelectric and
magnetostrictive phases. The exact closed-form solution for three-dimensional simply supported magneto-
electro-clastic laminates was presented by Pan [12] based on the quasi-Stroh formalism and the propagator
matrix method. Later, Pan and Heyliger [13,14] extended that solution to the corresponding free vibration
problem, and to the static cylindrical bending of magneto-electro-elastic laminates. An approximate solution
based on a discrete layer model was also obtained by Heyliger and Pan [15] and Heyliger et al. [16] for the
cases of two- and three-dimensional magneto-clectro-elastic laminates. More recently, Jiang and Ding [17]
presented an analytical solution for the study of beams, Lage et al. [18] developed a layerwise mixed finite
element model for plates, Buchanan [19] published a comparison between layered and multiphase models for
the static and dynamic analysis of magneto-electro-elastic plates, Latheswary et al. [20] studied the dynamic
response of moderately thick composite plates.

In this study, the governing equations of motion for two-dimensional linear magneto-clectro-elastic
laminates are solved using a discrete layer approximate model. Approximations for the three displacements
and electric and magnetic potentials are constructed for each homogeneous layer such that the dependence on
the in-plane directions and that on the thickness direction of the laminated plate can be separated. This
separation allows for breaks in the gradients of the three displacement components and the two potentials
across a dissimilar material interface. The free vibration behavior of a single homogeneous piezoelectric layer
is studied first to check the present formulation with the known exact solution. The present approach is also
validated by comparing the natural frequencies and mode shapes of a two-layer PZT-5A/graphite-epoxy
cantilever plate with the analytical solution presented by Vel et al. [21], and with several finite element models.
Finally, the natural frequencies, through-thickness modes shapes, and the influence of the piezoelectric and
piezomagnetic coefficients on the natural frequencies of a two-layer BaTiO;/CoFe,O, cantilever plate are
analyzed.

2. Theory
2.1. Geometry

Laminates are considered with the z-axis out of the laminate plane and the x- and y-axes are the
corresponding in-plane axes of the laminate. This is shown in Fig. 1. The laminates are considered to be either
very thin or infinitely long in the y-direction and are composed of an arbitrary number of elastic, piezoelectric,
or magnetostrictive layers. The laminate has dimensions L, in the x-direction and has total thickness H, with
individual layer thicknesses /1, /;, and so on. Layer 1 is the bottom layer of the laminate and layer n is the top
layer.
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Fig. 1. Laminate geometry.
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